Get Probability help - Ask a question to hire a Probability homework helper.

Probability homework help online. Find Probability homework answers by top homework helpers or ask questions free.

Post Questions/Projects

Ask A Question
Experienced Tutors

Browse 5000+ Homework Tutors.

24/7 QA Support

Ask Questions 24/7.

Freelance Tutoring

Top Marketplace For Tutors.

Related Subjects

- Algebra
- Applied Mathematics
- Applied Statistics
- Approximation Theory
- Bioinformatics
- Biostatistics
- Business Calculus
- Business Statistics
- Calculus
- Combinatorics
- Elementary Statistics
- Experimental Design
- Geometry
- Graph Theory
- Linear Algebra
- Math
- Mathematical Logic
- Number Theory
- Numerical Analysis
- Precalculus
- Psychology Statistics
- Set Theory
- Statistical Methods
- Statistics
- Topology
- Trigonometry

Please note: We do not publish private homework questions or assignment projects.

Use Tutlance AI smart search to find answers to your questions - free or paid. For custom homework solutions and assignment help, click on Ask a Question button and pay/hire someone to do homework for you and receive 100% correct homework answers.

34views

0answers

Probability

there are 6 rats in a cage, 4 trained and 2 untrained. a rat is removed from the cage not knowing wh

This order does not have tags, yet.

jojojoojojo

Student

asked on

30views

1answers

Probability

Assume that X={E,C,B,G} and Y={7,1,6,2,4,5} A code consists of 3 different symbols selected from X f

This order does not have tags, yet.

xoyazminnn

Student

asked on

62views

0answers

Option And Bond Valuation

solve this exam paper with correct answers. this exam is for actuarial science degree level and subj

This order does not have tags, yet.

Al

Student

asked on

59views

0answers

72views

1answers

91views

1answers

115views

0answers

Probability And Statistics Worksheets

Can you help me with a probability and statistics worksheet? There are 5 questions for which I

This order does not have tags, yet.

pmeneres

Student

asked on

73views

0answers

59views

0answers

60views

0answers

Statistical Inference For Data Science

A company claims that 80% recommend its brand of cough syrup to their patients. To test this claim a

This order does not have tags, yet.

pinni

Student

asked on

42views

0answers

Probability And Statistics Please See Attached

probability and statistics please see attached

This order does not have tags, yet.

StudentusRandomus

Student

asked on

45views

0answers

Statistics And Probability See Attached

Statistics and Probability see attached

This order does not have tags, yet.

StudentusRandomus

Student

asked on

72views

0answers

83views

0answers

The Final Project Requires You To Use R To Analyze This Data Set.

code guidelines: ? Should be single-spaced, with 1 inch margins and not exceed 12 pages. ? R must be

This order does not have tags, yet.

motezzy2

Student

asked on

71views

0answers

Probability Math I Need Help With That

Hey, could u solve these probability tasks that consist of 21 tasks in a simple way I could understa

This order does not have tags, yet.

MzzR

Student

asked on

59views

0answers

Probability is a broad topic which most students find it challenging tackling its questions. But as you know, passing your probability exam is of much importance as it contributes to our overall grades. To stand a better chance, you must score equally well in your assignments. Nonetheless, you don’t have to sweat with such tasks. All you have to do is to ask for our probability assignment help.

Probability theory is a branch of mathematics related to probability and analyzing random events. The central objects of probability theory are random variables, stochastic processes (especially series of random variables), and events: mathematical abstractions of non-deterministic events or measured quantities that may either be single occurrences or evolve over time in terms of a probability distribution. The mathematical theory of probability is used as a tool in many applied fields, including **statistics**, **machine learning**, **finance**, **gaming**, **physics,** data science and other sciences.

Probability theory is also employed in various attempts to rationalize seemingly chance-based events such as philosophy and religion.

For example: If you toss a coin enough times then eventually it will be heads…

Probability theory tries to predict the number of times that it will be heads. In many cases, theory and experiment agree so well that the probability falls under mild uncertainty (for example, tossing a fair coin does not exhibit any significant deviations from 50%).

Probability theory is used in **mathematical finance** to determine the value of derivatives, options etc.

Probability theory experiments can be carried out using a random device such as dice or an urn with marbles colored red or black, but may also take place in nature due to chaotic variables independent of human control.

Random events can be divided into 3 categories namely independent events, dependent events, or mixed events.

**Independent events:** An 'independent' event is one in which a probability distribution cannot be constructed based on the information on the occurrence of previous events because it requires knowledge not just about the individual events but also about their relationship with each other and even the manner in which they are generated.

**Dependent events:** A 'dependent' random variable is one that depends on or can only take values determined by the outcomes of an independent variable.

A roll of dice for example has no value unless there are numbers printed on them so it is impossible to tell what will happen if we throw them until they land showing their values.

Hence we say this rolle has a "mixed" probability distribution because its possible outcomes depend on (are mixed with) each other.

**A "mixed" event** is composed of a set of independent events.

Probability theory provides an excellent way for researchers to model uncertainty based on the understanding that many processes are random.

There is no unified theory for probability theory. The various methods listed above have been developed in order to ensure consistency with different branches of science, including chemistry and biology.

Probability is useful because it allows researchers to study a wide range of events without having to go through the lengthy process of running trial experiments over and over again. Instead, mathematicians can use the principles of probability theory to calculate the likelihood that an event will occur when given specific parameters.

The method of least squares is one way in which our **online statistics tutors** and **online probability tutors** can study the probability that an event will occur based on previous data.

Probability is a numerical description of how likely an event is to occur. Alternatively, it could be how likely it is that a proposition is true. It ranges from 0 to 1, where 0 is an impossibility, and 1 indicates certainty.

Otherwise, different books tend to have different definitions of probability, and this, therefore, poses a challenge to students, even making it hard for them to understand it. Our Probability Assignment Help comes in handy as it simplifies everything helping you understand the basic rules of probability. These rules are:

**Classical (sometimes called “A priori” or “Theoretical”) –** if we have a random process in which there are “n” equally likely outcomes, and the event A consists of exactly “m” of these outcomes, we say that the probability of A is m/n, which write as “P(A)=m/n” for short. This perspective has the advantage that it is conceptually simple in many situations. However, it is limited, since many situations do not have finitely many equally likely outcomes.

**Empirical **- This perspective defines probability via a thought experiment. The empirical view of probability applies to most statistical inference procedures. These are called frequentist statistics. The frequentist views what gives credibility to standard estimates based on sampling.

**Subjective – **is an individual’s measure of belief that an event will occur. This probability fits well with Bayesian statistics, which are an alternative to the more common frequentist statistical methods.

**Axiomatic **- is a unifying perspective. We can prove the coherence conditions needed for subjective probability hold for the classical and empirical definitions. The axiomatic perspective codifies these coherence conditions, so, we can use it with any of the above three perspectives.

These concepts may seem challenging and complex to students, even discouraging them. That’s why we have experts to help you out. If you have such an assignment, all you have to do is post it on our platform and recruit the top-rated probability expert to help you. We guarantee excellent work with no allegiance.

**Classic probability help**-This often involves coin tossing or rolling dice. It is calculated by listing all of the possible outcomes of the activity and recording the actual occurrences.**Experimental probability help**-It is based on the number of possible outcomes by the total number of trials.**Theoretical probability help**-It is an approach that bases the possible probability on the possible chances of something happening.**Subjective probability**-It is based on a person’s own personal reasoning and judgement.It is the probability that the outcome a person is expecting will actually occur. There are no formal calculations or subjective probability but instead it is based on a person’s own knowledge and feelings.

In probability theory a random event is some occurrence, whose outcome is uncertain. You know the chance it will happen but you don't know for certain that it will or won't happen.

The probability function is a term that's used to describe the likelihood that an event will happen under certain circumstances.

A discrete random variable is one that can take any of a specified finite set of possible values e.g., the number of marbles in an urn (we could have 0, 1, 2, ... , 1234).

A continuous random variable on the other hand has infinitely many potential values (such as the position of a particle in space or time) and is usually characterized by its probability density function which gives the probability that this variable will take a specific value x.

If an event A is the union of k events, then P(A) = √P(Ai) where i is a symbol for counting integers and Ai denotes Ai as a subset. This rule makes it easy to compute probabilities of events which are composed of smaller independent events.

The Law of Total Probability states that in order to calculate the probability of an event happening and it is also possible that it does not happen, we can add together all of the probabilities for either the event or its complement. It states: P(A∪B)=P(A)+P(B)-P(A*B).

This rule allows you to calculate the probability that one event A will happen, given that another event B has happened. The formula is: P(A|B) = PB * P(B).

This theorem states It states: if an experiment has n possible outcomes Ai then for any two of these there is some relationship between their probabilities e.g., P(Ai)=P(Bi)-P(Ai)*P(Bi|Ai). We can use this relationship to calculate the probability of any event by adding together all of the relevant conditional probabilities. This theorem allows us to apply Bayes' theorem when two events are linked.

This rule states that if we know the frequencies with which different outcomes occur in repeated experiments and we also know the chance of each outcome given X, then P(X)=∑PiP(Xi|X) where i runs through all possible outcomes.

The complement rule replaces "not A" with "the event that is not A" so for example P(A')=1-P(A).

If two random variables X and Y are independent then the probability of them both happening together, P(X+Y) can be calculated by multiplying their probabilities P(X)×P(Y). If they are not independent then this formula is incorrect.

If random variables X and Y are independent then their joint probability P(X+Y) is the product of two conditional probabilities, P(X|Y)×P(Y).

This theorem states that if our hypothesis H1 predicts X more than are hypothesis H2 then the ratio between P(X|H1)/ P(X|H2) will increase as our evidence E increases. This allows us to use Bayesian Probability to determine what should come first when using evidence from repeated experiments, a hypothesis or a conjecture.

This function describes the chance of exactly x occurrences of an event A in an infinite number of independent trials. Probability density function , p(x) is a special case.

This theorem applies when you have a large number of independent and identically distributed observations which tend to increase with n, although not necessarily in a linear fashion. The variance tends to decrease as n increases and this causes the distribution to become increasingly 'normally' distributed.

This function describes the number of successes out of a certain amount (n) of independent trials. It can be shown that P(X)=np where p is the chance of success in one trial and n=the amount of trials.

The Poisson Distribution function can be used when there are many occurrences in a small time interval or if an event has a low probability but occurs frequently. e.g., how often will you win the lottery?

The formula is: P(X)=√λe–λ*x which means that if we know our average rate λ then we can calculate the probability that any particular x events occur within an interval by using the formula √ex.

This adds a geometric distribution to the binomial distribution. For example, P(X=x)=Γ(λ)×P(X=0)×e–λ*x! where λ is the average rate of occurrence and x is the number of occurrences we are interested in.

If p≈1 this distribution approximates the binomial result for n>30. It can be shown that when N is infinite then they have equal distributions. However, if we take small values of p then the Poisson equation will return similar results however there are some subtle differences.

If p is small and we have large values of n then the binomial distribution can be used to approximate the Poisson equation with accuracy greater than or equal to 5% for all x≥3.

This describes the time between successive occurrences of an event. If λ>0, it describes the time between events that occur at a constant average rate (e.g., how long it takes before you win a game of chance). In this case P(X=x)=λ×e–λ*x where λ is the average rate [5]. This function closely corresponds to many Probability Distributions and the related exponential function.

The Gamma function is used to describe the change in a quantity over time . The Gamma distribution is often applied to errors that occur repeatedly. For example, if we have an experiment where there is an 85% chance of success then we can say with some certainty that the probability of obtaining a particular number of successes in a fixed number of trials will be normally distributed between 15% and 95%. However, if our error rate wasn't constant (85%) but varied according to some other more complex law then it may not be practical to use a normal distribution as an approximation because Γ(x) doesn't vary linearly with x.

This is defined as H(t)=the probability that a failure has not occurred at time t and will occur within the next instant.

This function is used to describe the ratio of people who have survived past some event. S(t) describes how many successes there are after a particular interval and can be seen in the following formula: S(t)=∑xk=0∞e-λ*k where λ represents our rate of occurrence.

The Weibull distribution function can be calculated by using this formula: W(x)=e-"m*x" if x>0 and W(x)=0 if x<0. Since the Weibull distribution function has a maximum of 1 it can be seen that "m" must be positive. Weibull probability density function is used when we need to analyze how the power of a process will change over time

This is used to describe the relative number of successes in relation to some large number of events. It can be calculated with this formula: P(X>x)=Γ(a)×e-"λ*x" for λ>0 where a and λ represent parameters that we must determine. An example would be how many customers do you need to serve before at least one person becomes dissatisfied? A normal distribution could also be used as an approximation however it only describes the probability density functions in terms of x, whereas the Pareto distribution also includes a parameter "a" that describes the absolute number of successes, so it is much more flexible. The maximum value of its probability density function is 1 and that of its cumulative distribution function is 1, which makes it an extremely useful tool when comparing systems with unequal mean performance measures.

The Lognormal distribution functions are used in cases where we have information about both the mean and standard deviation values but we want to know how these relate to each other through the use of some predictive distribution function/density function.

This function is used when an experimenter can have varying degrees of success or failure which means it represents the probability that something will happen at some point in time. The Lambda function has special applications in the study of economics where companies need to consider how they manage risk and uncertainty. By using real world examples it was found that practical use of this tool reduces errors by 60%.

This function is the probability density of a continuous random variable with one parameter which represents its mean. Since Rayleigh values are often small this makes it very useful in cases where we have to predict a specific frequency or count and we just want to make sure that our results fall within some range.

Since Brownian motion has many uses in physics, biology and finance research, there are several different approaches for calculating its related distribution functions.

This distribution function is used when we want to know how many events will occur within a certain amount of time and it contains two parameters: alpha and beta.

The Pareto distribution functions are special cases of power laws which describe how a system changes in response to an input.

To determine the probability density function of this distribution we must calculate it by taking the ratio of two Gamma functions since it is based on how a Poisson process can be recombined in certain scenarios. This function allows us to model how an event rate will change over time and has important applications for models that describe traffic or other systems.

This distribution function is only used in Fractal **Geometry** when a person is analyzing their work based on fractals that are defined by real world sets of data. Also discussed in depth in **big data assignment help** section.

Using this approach researchers are able to simulate many different things including:

- gene mutation rates through replication errors,
- random drift by looking at how particles move through a fluid,
- wave functions of atoms or molecules.

This function is used to calculate the probability that we will see an event occur at least once in a certain time period. This concept is useful in our **genetics homework help** service. Plethora distributions are a type of function that can be used when you have too many random events occurring for one parameter.

The multinomial distribution is a common way for calculating probabilities when you know that each trial has two possible outcomes, e.g., if you have a coin which comes up heads or tails with equal probability and you flip it again and again then P(X=1)=P(H)×P(T)/(P(H)+P(T)) where H and T represent two symbols for heads and tails respectively (see figure below). This can be used to calculate many probabilities starting from the same hypothesis

A confidence interval is an interval estimate calculated from a sample data in which you have a given level of confidence, e.g., 90%, 95% or 99%, that the true value within this threshold will fall into the interval.

This function is used when you have a population with a finite number of individuals. In particular, it allows us to calculate how many people will exhibit one or more characteristics in this pool.

Our assignment help is the best according to our client’s feedback. The hired professional will research your probability work, and deliver the best paper that will hand you a top grade on a silver platter. Plus, the work can form quality reading material to help you understand the topics and concepts of probability. In the end, working with us will make you a better student, expanding your knowledge and understanding of the different types of probability.

Are you still wondering why you need our probability assignment help? Well, we:

- Offer cheap and affordable academic writing help,
- Deliver quality work that guarantees you an A.
- Deliver on time, giving you sufficient time to go through the paper and understand it.
- Ease your workload, letting you work on other things.
- Help improve your grasp of the concept of probability, its types, and perspectives.

Our Probability Assignment Help is recommendable to everyone who needs assistance. Our qualified and experienced experts never disappoint regardless of your academic level. We offer help to high school and diploma students, undergraduates, post-graduates, and even doctorate scholars. Now you know where to look if you have a probability assignment bugging you.

If you need help with college probability homework, we can help you. Our tutors will guide you in regards to probability homework, and also help you with other subjects such as maths too. We’re a team of highly skilled and experienced college tutors who offer top quality services for students around the world.

We all have those moments when we feel lost and confused about our homework. We randomly search for help online, but all the resources out there are too difficult to understand or they don't really offer us solution that we're looking for.

For this reason we've created our homework service so you can have access to college probability tutor who will guide you and give you answers to your questions immediately. All of our tutors are qualified, and they have years of experience in the field.

You don’t have to dread those complicated subjects, we will help you with probability homework, just fill out this easy order form and one of our tutors will assist you immediately.

Our tutors will help you answer your college probability homework questions, we have helped students from different parts of the world including US, UK and Australia.

You can chat with one of our **online tutors** now. All you need to do is **ask math questions and get answers for free** by filling in a simple form: **ask a question get an answer instantly**.

Forget **homework answers websites** and forum websites online. We understand how hard it is to complete difficult college probability homework problems with all those complex formulas and definitions so don’t worry, we will take care of it and show you the way. Just fill out this order form and one of our tutors will be assisting you right away.

We also offer additional help in other college subjects including **calculus**, **physics**, **english language** or **history** to make sure that every student gets professional assistance with all types of assignments.

We have college probability tutors who are ready to provide you with top quality services 24/7. We also offer discounts for students, so if you need help with college probability homework or any kind of other subjects we will gladly assist you.

Ready to get 100% correct Probability homework help answers?

Get started with Tutlance online Probability homework help answers website. Take the first step and hire a homework helper. Looking for free Probability homework assistance? Now you can ask Probability questions and get answers for free - by asking community question at no cost.

To hire an online tutor to help with Probability homework is simple and secure. All you need to do is to post the assignment and interested professionals will respond instantly with bids. Chat with online tutors to get live Probability answers. Below is a list of tutors related to Probability homework help.

- Algebra Tutors
- Applied Mathematics Tutors
- Applied Statistics Tutors
- Approximation Theory Tutors
- Bioinformatics Tutors
- Biostatistics Tutors
- Business Calculus Tutors
- Business Statistics Tutors
- Calculus Tutors
- Combinatorics Tutors
- Elementary Statistics Tutors
- Experimental Design Tutors
- Geometry Tutors
- Graph Theory Tutors
- Linear Algebra Tutors
- Math Tutors
- Mathematical Logic Tutors
- Number Theory Tutors
- Numerical Analysis Tutors
- Precalculus Tutors
- Psychology Statistics Tutors
- Set Theory Tutors
- Statistical Methods Tutors
- Statistics Tutors
- Topology Tutors
- Trigonometry Tutors