Hire Experts For Answers
Order NowRelated Study Services
- Homework Answers
- Coursework writing help
- Term paper writing help
- Writing Help
- Paper Writing Help
- Research paper help
- Thesis Help
- Dissertation Help
- Case study writing service
- Capstone Project Writing Help
- Lab report Writing
- Take my online class
- Take my online exam
- Do my test for me
- Do my homework
- Do my math homework
- Online Assignment Help
- Do my assignment
- Essay Writing Help
- Write my college essay
- Write my essay for me
DESCRIPTION
Posted
Modified
Viewed
17
I need to code for SAS
SAS Homework that I need a whole code for this project. The data and the project instructions are attached
SAS Homework that I need a whole code for this project. The data and the project instructions are attached
SAS Homework that I need a whole code for this project. The data and the project instructions are attached
SAS Homework that I need a whole code for this project. The data and the project instructions are attached
This order does not have tags, yet.
Attachments
/******************************************************************************
This macro will report all variable information, the the summary of all
numerical variables, and the frequency of values in every categorical
variables
Parameters:
Dataset: name of the SAS dataset
Out : the directory and the .rtf file name to store the output file;
Author :
******************************************************************************
Log:
...
- 05/01/2017: Added features to only report the first 10 levels when the
number of levels >=100;
- becomes -V3
- 11/20/2019: added a new parameter 'out=';
- becomes -V4
- 10/18/2020: added original order of variables so can produce table for
char variables in the original order;
- 10/19/2021: edited for 2021 mid-term project
******************************************************************************/
/*-------- Start the Macro --------------------------------------------------*/
%macro DataInfo (Dataset=, out=);
/****** find the levels and frequency for all character variables ************/
/* initiate these datasets to null */
data FreqFinal FreqFinal1 FreqFinal2 FreqFinal3 summ;
set _null_;
run;
/* for all categorical variables, want frequency and % */
ods output OneWayFreqs=FreqFinal Nlevels=Nlevels;
proc freq data=&Dataset nlevels order=data;
table _character_/missing; /* want the freq of all character variables */
run;
/*---'FreqFinal' has this structure: ---
--------------------------------------------------
Table | F_Name | F_Sex | Frequency | Percent |
----------|--------|-------|-----------|---------|
Table Name| Thomas | | 1 | 5.26 |
Table Name| William| | 1 | 5.2 |
...
Table Sex | | F | 9 | 47.37 |
Table Sex | | M | 11 | 52.63 |
------------------------------------------------*/
/* --- But want this structure in report: ---
-------------------------------------------------
Variable | Level | Number | Nlevels | Order |
----------|--------|----------|-----------------|
Name |Thoms |1(5.26) | 19 | 1 |
Name |William |1(5.26) | 19 | 2 |
...
Sex |F |9(47.37) | 2 | 1 |
Sex |M |11(52.63) | 2 | 2 |
-----------------------------------------------*/
/* --- first, want to find out how many categorical variable and put the number
to a macro variable --*/
/* want to count how may variables start with F_, therefore the number of
variable in the original dataset */
data Fn;
set FreqFinal (keep=F_:); /* only keep all the char variables */
run;
/* -- use proc contents to get the number of variables -- */
ods output Attributes=Att;
proc contents data=Fn;* out=VarN;
run;
data Att2;
set Att(where=(Label2="Variables"));
/* put the nubmer of variables into a macro variable */
call symput("VarN", nValue2);
run;
/*--------------------------------------------------------------------------*/
/* Now, if the values in "Table" matches the name of a variable, then put its
values into a commmon new variable */
/* first, extract the variable name */
data FreqFinal1a;
set FreqFinal;
Variable = scan(Table,-1,' ');
order = _n_; /* want the original order for report */
run;
/*--------- added this to have a new column 'Nlevels', 05/01/2017 --------*/
proc sort data=FreqFinal1a;
by Variable;
run;
data Nlevels2;
set Nlevels(rename=(TableVar = Variable));
run;
proc sort data=Nlevels2;
by Variable;
run;
data FreqFinal1b;
merge FreqFinal1a Nlevels2;
by Variable;
run;
/*------------------------------------------------------------------*/
/* then, put the levels in a common varialbe called 'Level' */
data FreqFinal2;
set FreqFinal1b;
/* put all column names in dataset 'FreqFinal1b' starting with 'F_'
to an array */
array var(&VarN) F_:;
/* each variable starting with 'F_' contains its value of each level */
do i=1 to &VarN;
if "F_"||Variable = vname(var(i)) then
do;
/* create a new variable 'Level' to house all levels of each variable */
Level = var{i};
end;
end;
run;
/* now refine the dataset for reporting: */
data FreqFinal2a (keep=Variable Level Number Nlevels order);
retain Variable Level Number Nlevels;
set FreqFinal2;
/* Concatenate these components: */
pct = put(Percent,4.1);
Number = Frequency||' '||'('||strip(pct)||')';
label Number ='Number (%)';
run;
/* --- Added this so if the Nlevels > 100, only keep the first 10 levels:
05/01/2017 --*/
data FreqFinal3;
set FreqFinal2a;
by Variable notsorted;
if first.Variable then order2 = 1;
else order2 + 1;
if Nlevels > 100 then do;
*Nlevels2 = ">100"; /* don't really need this line */
if order2 <=10 then output; /* only keep the first 10 levels if the number
of levels of a variable >=100 */
end;
else do;
*Nlevels2 = Nlevels; /* don't really need this line */
output;
end;
run;
/* re-order to the original order for reporting: */
proc sort data=FreqFinal3;
by order; /* Not 'order2' */
run;
/****** ready to report the categorical variables ****************************/
/************ Now use ods rtf to report all three tables: ********************/
OPTIONS center orientation = portrait;*landscape;
title;
ods noproctitle;
/* want to use Tilde sign ~ as the escape character for inline editing */
ods escapechar = '~';
ods rtf file= &out style=journal3a;
/* --- Title of the report: --- */
ods rtf text = "~S={just=center font=('arial', 11pt)} ~3n";
ods rtf text = "~S={just=center font=('arial', 16pt,bold) textdecoration=underline}
{Information about dataset - &Dataset}";
/* --- Table 1: The features about the dataset and all variable attributes - */
ods rtf STARTPAGE = Now;
ods rtf text = "~S={just=center font=('arial', 11pt)} ~2n";
ods rtf text = "~S={just=center font=('arial', 14pt,bold)}
{Table 1: Metadata and Variable information in dataset - &Dataset}";
ods rtf text = "~S={just=center font=('arial', 11pt)} ";
ods select all;
proc contents data=&Dataset;
run;
/* --- Table 2: Statistics of all continuous variables --- */
ods rtf STARTPAGE = Now;
ods rtf text = "~S={just=center font=('arial', 14pt,bold)}
{Table 2: Summary of all numerical variables in dataset - &Dataset}";
ods rtf text = "~S={just=center font=('arial', 11pt)} ";
ods select summary;
proc means data= &Dataset n nmiss mean std stderr median min max maxdec=1;
run;
/* --- Table 3: Now report the frequency dataset FreqFinal2 ---*/
ods rtf STARTPAGE = Now;
ods rtf text = "~S={just=center font=('arial', 14pt,bold)}
{Table 3: Levels and frequency for all categorical variables in dataset - &Dataset}";
ods rtf text = "~S={just=center font=('arial', 11pt)} ";
ods select Report;
proc report data=FreqFinal3 nowd headline headskip spacing=4
style(header)={font=('arial',12pt,bold)};
column Variable Level Number Nlevels;
define Variable / "Variable" order=data group
style(column) = {cellwidth = 3.0in font=("arial", 11pt, bold)
just=right rightmargin=0.4in};
define Level / "Levels" order = data
Style(column) = {just = left cellwidth = 1.6in leftmargin=0.2in};
define Number / "n (%)" order=data
style(column) = {just = center cellwidth = 1.2in rightmargin = .1in};
/* added this to report number of levels, 04/18/2017 */
define NLevels / "Number of Levels" order = data group
Style(column) = {just = left cellwidth = 1.0in leftmargin=0.2in};
compute before Variable;
line ' '; /* add a blank line above every variable name */
endcomp;
run;
/* when at least one char variable contains > 100 unique levels,
will note like this: */
proc sql noprint;
select max(NLevels) into :Level_max
from NLevels2;
quit;
%if &Level_max > 100 %then %do;
ods rtf text = " ";
ods rtf text = "~S={font = ('arial',9pt, bold) just = left} Note:";
ods rtf text = "~S={font = ('arial',9pt) just = left}
When number of unique levels in a variable is >=100, only report the first 10
levels;";
%end;
/*-------------------------------------------------------------------------------*/
ods rtf close;
%mend;
/*------------ The end of the Macro ---------------------------------------------*/
/*--- test this macro: ---*/
*%DataInfo (dataset=sashelp.class,
out="/folders/myfolders/my SAS results/Dataset info and summary of SAS
dataset &Dataset (&sysdate9).rtf");
/* Note: this sashelp.class dataset has no "label, formate" information */
/*~~~ 10/19/2021: ~~~*/
/*******************************************************************************
How to use the 'Data info and summary macro - V4 (for SPS course 2021).sas':
******************************************************************************/
/*--- 1. First save that Macro to a folder and do the following: ---*/
/*--- 2. Invoke the macro now: ---*/
/*-----------------------------------------------------------------------------*/
/* - In SAS Studio, use %include to run the .sas file in the background: */
%include "/home/ /SAS class 2021 fall/Mid-term/
Data info and summary macro - V4 (for SPS course 2021).sas";
/*-----------------------------------------------------------------------------*/
/*--- 3. Now use the macro: ------*/
/*-----------------------------------------------------------------------------*/
/*--- Here use the SAS build-in dataset 'class' ---*/
%DataInfo (Dataset=sashelp.class,
/* Provide the location and the name of the report (a .rtf file): */
/* Note: this directory is in cloud if you are using SAS OnDemand */
out="/home/ /SAS class 2021 fall/Mid-term/
Dataset info and summary of SAS dataset sashelp.class.rtf");
/* After running this, go to the folder and find the .rtf report, download it
to your local computer, open it in MS Word to view results. */
/*-----------------------------------------------------------------------------*/
/*--- Other form of usage: -------*/
/* If want a subset of 'Class' */
*%DataInfo (Dataset=sashelp.class(keep=Name Age),
out="/home/ /SAS class 2021 fall/Mid-term/
Dataset info and summary of SAS dataset sashelp.class-2.rtf");
/* If want a subset of 'Class' */
*%DataInfo (Dataset=sashelp.class(where=(Sex='F')),
out="/home/ /SAS class 2021 fall/Mid-term/
Dataset info and summary of SAS dataset sashelp.class-3.rtf");
/* another SAS dataset, > 5k obs */
*%DataInfo (Dataset=sashelp.heart,
out="/home/ /SAS class 2021 fall/Mid-term/
Dataset info and summary of SAS dataset sashelp.heart.rtf");
/* there is no categorical variable, will have empty table */
*%DataInfo (Dataset=sashelp.air,
out="/home/ /SAS class 2021 fall/Mid-term/
Dataset info and summary of SAS dataset sashelp.air.rtf");
/* another SAS dataset, > 70k obs, many unique levels, will only report the first
100 levels for each variable: */
/* - Large data, may run for a while: */
*%DataInfo (Dataset=sashelp.ztc,
out="/home//SAS class 2021 fall/Mid-term/
Dataset info and summary of SAS dataset sashelp.ztc.rtf");
/*----------------------------------------------------------------------------*/
Project instruction
Original column Original column name New column name (SAS V7 names) New column values Label Comments
A Patient ID Patient_ID as original Patient ID character
B Age at Diagnosis (yrs) Age as original but should be numeric numerical
C Date of Diagnosis (2 digit month/2digit dat/4 digit year Date_of_Dx as original Date of Dx numerical
D Sex (M/F) Sex F, M
E ECOG PS (0-4, or U for unknown) ECOG_PG 0,1,2,3,4 ECOG Performance numerical; 'U' or 'unknown' should be set to missing
F Any prior or concurrent cancers (Y/N). If yes, describe Prior_or_concurrent_cancers N,Y 'U' should be set to missing; Others should extract the first letter and upcase it;
G History of solid organ transplant or autoimmune disorder (Y/N/Unk) Solid_organ_transplant N,Y,U
H History of allogeneic stem cell transplant (Y/N/Unk) Allogeneic_stem_cell N,Y,U
I On Immunosuppressors? (Y/N/Unk) Immunosuppressors N,Y,U
J If on immunosuppressors, please list.
K Classified as PTLD (Y/N) PTLD N,Y
L If PTLD, 1=monomorphic, 2=polymorphic
M Histology (1=DLBCL, 2=MZL, 3=other - specify) Histology DLBCL,MZL,Other 1=DLBCL, 2=MZL, 3=Other, 'U' set to missing
N If other, specify
O If DLBCL, COO (1=Germinal Center (GC), 2=Non-GC (nonGC), 3=Unknown, Other) COO 1_GC, 2_non-GC, 3_Other 1=1_GC, 2=2_non-GC, 3=Other
P CMYC >40% by IHC (1=y, 2=n, 3=unknown) cMyc >40%, ≤40% 1= >40%, 2= ≤40%, 3 set to missing
Q BCL2-positive >50% by IHC (1=y, 2=n, 3=unknown) BCL2 >50%, ≤50% 1= >50%, 2= ≤50%, 3 set to missing
R CMYC FISH translocated (1=y, 2=n, 3=unknown) cMyc_Fish N,Y
S BCL2 translocated by FISH (1=y, 2=n, 3=unknown) BCL2_Fish N,Y 1=Y, 2=N, 3 set to missing
T BCL6 IHC (1=Pos, 2=Neg, 3=Unk) BCL6 Pos, Neg 1=Pos, 2=Neg, 3 set to missing
U MUM1 (1=Pos, 2=Neg, 3=Unk) MUM1 Pos, Neg 1=Pos, 2=Neg, 3 set to missing
V CD5 (1=Pos, 2=Neg, 3=Unk) CD5 Pos, Neg 1=Pos, 2=Neg, 3 set to missing
W CD10 (1=Pos, 2=Neg, 3=Unk) CD10 Pos, Neg 1=Pos, 2=Neg, 3 set to missing
X CD20 positive (1=Pos, 2=Neg, 3=Unk) CD20 Pos, Neg 1=Pos, 2=Neg, 3 set to missing
Y Ki67 (%)
Z EBER (1=Pos, 2=Neg, 3=Unk) EBER Pos, Neg 1=Pos, 2=Neg, 3 set to missing
AA EBV PCR serum (1=Pos, 2=Neg, 3=Unk)
AB If pos, viral load
AC EBV PCR CSF (1=Pos, 2=Neg, 3=Unk)
AD if pos, viral load
AE Brain parenchyma involved (Y/N/) Brain_parenchyma N,Y
AF If parenchyma involved, 1= single site OR 2 = > single site Parenchyma_sites Single site, >Single site 1=Single site, 2= >Single site
AG Specify parenchyma locations (1=temporal, 2=frontal, 3=parietal, 4=occipital, 5=brainstem, 6=thalamus, 7=cerebellum, 8=corpus callosum, 9=basal ganglia, 10=nos, 11=pons
AH CSF involved (Y/N/Unknown) CSF N,Y 'M' or 'U' set to missing
AI Spinal cord involved (Y/N/Unknown) Spinal_cord N,Y 2 should be N
AJ Eyes involved (Y/N/Unknown or unchecked) Eye N,Y 2 should be N
AK Did patient relapse after (or refractory to) initial therapy: (Y/N)? Relapse N,Y
AL If YES relapse or refractory, list the date (s). (2 digit month/2 digit date/4 digit year)
AM Date of last follow-up (2 digit month/2 digit date/4 digit year)
AN Patient alive (Y/N) OS_event 0, 1 Overall Survival Event numerical; Y,y = 1
N,n = 0
AO If applicable, date of death (2 digit month/4 digit year)
AP Lenth of Followup (mos)
AQ PFS (mos) PFS_mo as original but should be numeric Progression-free Survival (months) numerical
AR OS (mos) OS_mo as original Overall Survival (months) numerical
Project Instruction:
Due: 03Nov2021, 3:30pm, don't be late!
This mid-term project is NOT a group project, please do NOT share ideas or codes with your peers!
****************************************************************************************************
The data were from patients with Primary CNS Lymphoma (PCNSL). They are EBV positive or EBV negative as determined by EBER staining (column Z: Pos = Positive; Neg = Negative; Unk = Unknown).
For this Mid-term project, please:
1. Import the 'Raw data' worksheet in this Excel file to create a SAS dataset (raw SAS dataset); Don't edit the raw data in the original Excel file in any way!
2. In ONE and only one Data Step, write SAS codes to clean the raw data to create a clean SAS dataset according to the requirements as listed below:
- The original column positions and column names are in column A and B here, respectively. Please create new variable for each column with new column name as listed here in 'New column name' (column C); If it is blank in 'New column name', don't need to do anything with that original column;
- Each new column takes the values from the corresponding original column but re-coded as shown in column D: 'New column values' (case sensitive) based on instruction in column E: 'Comments' ;
- Want permanent lable for some of the new variables as listed in column E: 'Label' , e.g.: 'OS_mo' as this: 'Overall Survival (months)', etc;
- Create a new variable called 'Age_group' as this: if younger than 18 (not including 18), then coded as '< 18'; if between 18 - 65 (includes 18 but excludes 65), then coded as '18 - 65', if older than 65 (inclusive), then coded as '>= 65', if age is missing then coded as a character missing;
- Create a new variable called 'Days_to_end' by calculating 'Days to end of study' as this: from Date of Diagnosis to the date Oct. 15, 2021 (inclusive);
- If there are any other requirements not mentioned in this instruction, please use common sense and make judgement yourself;
- Save the cleaned SAS dataset with its new variables only to a permanent library, for example: '.../Mid-term project' to be used for later Final-term project;
3. Use the Macro I provided [in 'Data info and summary macro - V4 (for SPS course 2021).sas' file] to produce one rtf files: summarizes only the new variables (as appeared in 'New column name' column here) in the cleaned SAS dataset;
4. All your SAS codes, including the Macro run, should be in ONE .sas file.
5. Submit your .sas file and the final SAS dataset (cleaned SAS dataset) containing only the new variables and all their observations; Also submit the rtf summary files;
6. So there are total of 3 files you should submit to finalize your mid-term project. Please include your CWID in the file names and name each of your 3 files as these:
Mid-term project_your CWID.sas
Cleaned data_your CWID.sas7bdat
Sumamry of cleaned data_your CWID.rtf
****************************************************************************************************
------- Bonus point (2 points towards your final grade of this course): ---------------------------------------------------------------------
The Macro I provided is not able to produce summary statistics for character variable whose name is not a V7 SAS name.
If you can modify the Macro so that when you use it on the raw SAS dataset to produce the 'Summary of raw data_your CWID.rtf' file, you see all the original variables names (non-V7 names, with options validvarname=any, which is the default now) in the .rtf file tables with their correct summary statistics. DON'T change the default 'validvarname' option in your SAS Studio! In other words, your modified Macro should work on any variable names.
In the log with the Macro, write what you did to the Macro.
Submit two file: this modified Macro as 'Data info and summary macro - V4 (for SPS course 2021)_your CWID.sas' AND the new .rtf file for raw SAS dataset as: Summary of raw data_your CWID (for bonus point).rtf
------------------------------------------------------------------------------------------------------------------------------------------------------------------
- Dr. Zhengming Chen
Oct 2021
Raw data
PCNSL raw data Only if EBER =1 (positive)
Patient ID Age at Diagnosis (yrs) Date of Diagnosis (2 digit month/2digit dat/4 digit year Sex (M/F) ECOG PS (0-4, or U for unknown) Any prior or concurrent cancers (Y/N). If yes, describe History of solid organ transplant or autoimmune disorder (Y/N/Unk) History of allogeneic stem cell transplant (Y/N/Unk) On Immunosuppressors? (Y/N/Unk) If on immunosuppressors, please list. Classified as PTLD (Y/N) If PTLD, 1=monomorphic, 2=polymorphic Histology (1=DLBCL, 2=MZL, 3=other - specify) If other, specify If DLBCL, COO (1=Germinal Center (GC), 2=Non-GC (nonGC), 3=Unknown, Other) CMYC >40% by IHC (1=y, 2=n, 3=unknown) BCL2-positive >50% by IHC (1=y, 2=n, 3=unknown) CMYC FISH translocated (1=y, 2=n, 3=unknown) BCL2 translocated by FISH (1=y, 2=n, 3=unknown) BCL6 IHC (1=Pos, 2=Neg, 3=Unk) MUM1 (1=Pos, 2=Neg, 3=Unk) CD5 (1=Pos, 2=Neg, 3=Unk) CD10 (1=Pos, 2=Neg, 3=Unk) CD20 positive (1=Pos, 2=Neg, 3=Unk) Ki67 (%) EBER (1=Pos, 2=Neg, 3=Unk) EBV PCR serum (1=Pos, 2=Neg, 3=Unk) If pos, viral load EBV PCR CSF (1=Pos, 2=Neg, 3=Unk) if pos, viral load Brain parenchyma involved (Y/N/) If parenchyma involved, 1= single site OR 2 = > single site Specify parenchyma locations (1=temporal, 2=frontal, 3=parietal, 4=occipital, 5=brainstem, 6=thalamus, 7=cerebellum, 8=corpus callosum, 9=basal ganglia, 10=nos, 11=pons CSF involved (Y/N/Unknown) Spinal cord involved (Y/N/Unknown) Eyes involved (Y/N/Unknown or unchecked) Did patient relapse after (or refractory to) initial therapy: (Y/N)? If YES relapse or refractory, list the date (s). (2 digit month/2 digit date/4 digit year) Date of last follow-up (2 digit month/2 digit date/4 digit year) Patient alive (Y/N) If applicable, date of death (2 digit month/4 digit year) Lenth of Followup (mos) PFS (mos) OS (mos)
C2385 72 7/11/18 F 1 N N N N N 1 2 2 1 2 2 1 1 2 2 1 90 2 2 3 Y 2 2 Y N N N 4/2/20 Y 20 20 20
C1632 74 7/18/16 F 3 N N N N N 1 2 1 1 1 2 2 1 2 2 1 100 2 2 2 Y 1 3 U N U Y 10/11/16 11/26/16 N 11/26/16 4 2 4
C2975 78 10/4/19 F 1 N N N N N 1 1 3 1 3 3 1 1 2 1 1 90 2 3 3 Y 2 1 N N U N 4/8/20 Y 5 5 5
C3073 62 12/20/19 F 0 N N N N N 1 1 2 2 2 2 1 1 2 1 1 90 2 3 3 Y 2 2 N N U N 5/14/20 Y 5 5 5
C2838 84 6/5/19 F 2 N N N N N 1 1 1 1 2 2 1 1 2 1 1 80 2 3 3 Y 1 3 U N U N 10/26/19 N 10/26/19 4 4 4
C736 9/16/13 F 1 Y, hx breast cancer N N N N 1 3 3 1 2 2 1 1 2 2 1 90 2 3 3 Y 2 3 N N N Y 7/1/14 9/30/14 Y 12 10 12
C3054 60 10/17/19 F 1 N N N N N 1 1 1 1 2 2 1 1 2 1 1 90 2 2 3 Y 1 2 N N N N 5/22/20 Y 7 7 7
C24 68 9/30/10 M 1 N N N N N 1 3 3 1 3 3 1 1 2 2 1 70 3 3 3 N N N U N 9/27/13 Y 36 36 36
C2826 76 4/25/19 M 2 N N N N N 1 2 1 1 2 2 1 1 2 2 1 90 2 3 3 Y 1 10 U N N Y 10/29/19 6/18/20 Y 14 6 14
C2394 62 3/9/18 M 2 N N N N N 1 3 3 3 3 3 3 3 3 3 1 U 3 3 3 Y 2 2 N N N N 7/23/18 Y 4 4 4
C2959 31 6/12/19 M 1 N N N N N 1 2 2 1 2 2 2 2 2 2 1 90 1 2 3 Y 2 5 N N U N 4/6/20 Y 10 1- 10
C1052 54 9/22/14 M 1 N N N N N 1 2 3 3 2 2 1 1 2 2 1 50 2 3 3 N Y N U N 7/15/16 Y 22 22 22
C2563 54 10/18/18 M 2 N N N N N 1 2 1 1 2 2 1 1 2 2 1 95 3 3 3 Y 2 3 N N N N 3/19/20 Y 17 17 17
C2492 53 7/6/18 M 2 N N N N N 1 2 2 1 2 1 2 1 1 2 1 80 2 2 2 Y 2 5 N N N Y 4/23/19 5/2/19 Y 10 10 10
C2698 55 3/12/19 M 1 Y, thymoma N N N N 1 2 1 1 2 2 1 1 1 2 1 90 2 2 3 Y 2 5 U N U N 6/5/20 Y 15 15 15
C2833 52 5/7/19 M 2 N N N N N 1 1 2 2 2 2 1 1 2 1 1 90 2 3 3 Y 2 2 U U U N 5/28/20 Y 13 13 13
C1788 56 1/17/17 M 0 N N N N N 1 2 1 1 2 2 1 1 2 2 1 80 2 2 3 Y 2 5 N N Y N 6/28/17 Y 5 5 5
C2482 54 9/27/18 M 1 N N N N N 1 3 3 3 3 3 3 3 2 1 1 U 3 2 3 Y 2 5 Y N N N 1/28/20 Y 16 16 16
Chicago1 84 10/20/09 M 3 Y, remote history of colon cancer in 1977 s/p resection and adjuvant chemotherapy n n n 1 1 3 1 3 3 1 1 1 1 1 u 3 1 <5000 3 y 2 4 n n u y 10/08/2015 11/18/15 n 11/18/15 72 72 73
Chicago2 12/2/11 M 2 n n n n 1 2 3 1 3 3 1 1 3 2 1 80 2 3 3 y 1 2 n n n n 04/08/2020 y 100 100 100
Chicago3 61 5/6/13 M 3 n y, cadaveric renal transplant in 2002 n y tacrolimus 0.5 mg bid, cellcept 500 mg daily, prednisone 4 mg daily y 1 1 2 3 1 3 3 2 1 3 2 1 u 1 1 <5000 3 y 1 2 u n n n 06/17/2013 n 06/17/2013 1 1 1
Chicago4 71 6/23/15 M 3 n n n n 1 2 1 1 3 3 1 1 2 2 1 90 2 3 3 y 1 9 u n n n 08/18/2015 n 09/01/2015 2 2 2
Chicago5 79 2/17/14 F 2 y, pituitary adenoma s/p resection and radiation therapy in 2009 n n n 3 high-grade B-cell lymphoma u 1 1 1 3 1 1 2 2 1 90 2 3 3 y 2 1 n n n n 03/24/2016 y 25 25 25
Chicago6 75 10/20/09 M 4 n n n n 1 1 3 1 3 3 1 1 3 1 1 30 2 3 3 y 2 2 n n n NA 12/28/2009 n 11/04/2009 1 1 1
Chicago7 61 10/1/10 M 0 n n n n 1 2 3 3 3 3 1 1 3 2 1 u 2 3 2 y 2 1 n n y y 10/31/12 02/03/2013 n 02/03/2013 28 25 28
Chicago8 80 7/9/12 M 3 y, history of localized ocular lymphoma in 2008 s/p vitrectomy alone and Stage III acral melanoma in 2011 s/p resection alone n n n 1 1 3 3 3 3 1 1 3 1 1 u 3 3 3 y 1 4 u n u N/A 07/27/2012 n 08/23/2012 1 1 1
Chicago9 70 12/23/13 M 1 n n n n 1 3 1 3 2 3 3 3 3 3 1 u 2 3 3 y 1 2 n n n y 10/27/16 05/18/2020 y 77 34 77
Chicago10 66 4/21/14 F 1 y, remote history of breast cancer resection in 1980s, no chemotherapy or radiation therapy administered and in continued remission n n n 1 2 1 1 2 3 1 1 2 2 1 95 2 3 3 y 2 6 n n n n 01/22/2020 y 69 69 69
Chicago11 80 7/11/14 M 4 n n n n 1 2 3 1 3 3 1 1 2 2 1 95 3 3 3 y 2 2 n n n y 12/12/14 01/25/2015 n 01/25/2015 6 5 6
Chicago12 60 9/14/16 F 1 n y, long history of rheumatoid arthritis, on oral methotrexate for 16 years prior to PCNSL diagnosis n y methotrexate n 1 2 1 1 3 3 1 1 2 2 1 100 2 3 3 y 2 2 n n n n 01/08/2020 y 40 40 40
Chicago13 83 1/6/17 M 2 n n n n 1 1 3 2 3 3 1 1 2 1 1 90 2 3 2 y 2 8 n n n n 06/05/2017 n 08/30/2017 8 8 8
Chicago14 72 1/13/17 M 4 n n n n 1 1 3 1 3 3 1 1 2 1 1 90 2 1 20063 3 y 2 9 n n n n 07/31/2017 n 07/31/2017 6 6 6
W1 76 10/9/11 M u N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 10 N N U Y 7/22/14 10/13/14 Y 36 33 36
W2 66 12/18/16 M u Y (history of testicular lymphoma over 20 years prior. Treated with chemo and radiation, relapsed and was treated with ASCT) N N N 1 2 3 3 3 3 3 1 3 3 1 u 2 3 3 Y 2 1 N N U N 7/25/19 Y 31 31 31
W3 70 6/18/15 F 1 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 2 N N U N 12/12/19 Y 54 54 54
W4 63 2/9/17 F u N N N N 1 2 3 3 3 3 1 1 3 2 1 u 3 3 3 Y 2 4 N N N Y 6/23/17 7/10/19 Y 29 4 29
W5 72 12/15/14 F 0 N N N N 1 3 3 3 2 3 3 3 3 3 1 u 2 3 3 Y 2 10 N N U Y 1/14/15 1/14/15 N unknown 1 1 1
W6 81 2/3/17 F 1 N N N N 1 2 3 1 3 3 1 1 3 2 1 u 2 3 3 Y 2 3 N N U N 3/23/17 N 3/23/17 1 1 1
W7 61 5/19/17 M 1 N N N N 1 2 3 3 2 3 1 1 2 2 1 50 3 3 3 Y 1 10 u N U Y 12/16/19 3/28/20 Y 34 31 34
W8 66 12/22/16 F u N N N N 1 2 3 3 2 2 1 1 3 2 1 u 2 3 3 Y 2 10 N N U N 3/10/17 Y 4 4 4
W9 63 1/27/12 F u N N N N 1 2 3 1 3 3 1 1 2 2 1 u 2 3 3 Y 2 2 N N U N 6/27/19 Y 89 89 89
W10 74 8/13/14 F 2 N N N N 1 3 3 3 2 3 3 3 3 3 1 u 3 3 3 Y 1 2 N N N N 10/21/19 Y 62 62 62
W11 69 1/19/12 F u N N N N 1 3 3 3 3 3 3 3 3 3 1 u 2 3 3 Y 2 2 N N Y N 5/8/15 Y 40 40 40
W12 10/21/15 F u N N N N 1 3 3 3 3 3 3 3 3 3 1 u 2 3 3 Y 2 2 U N U Y 12/9/15 6/14/17 Y 20 2 20
W13 81 7/3/17 M u N N N N 1 3 3 3 3 3 3 3 3 3 3 u 3 3 3 Y 1 2 N N U Y 8/24/17 9/20/17 Y 2 1 2
W14 61 3/9/16 M 2 Y (SCC of the skin- resected, CML dx 5 years prior on TKI, mycosis fungoides on UV therapy) N N N 1 1 3 2 3 3 1 3 3 1 1 u 2 3 3 Y 2 10 N N Y Y 9/28/17 12/20/18 Y 33 18 33
W15 64 2/5/16 F 4 N N N N 3 High grade B cell lymphoma 1 3 2 2 3 1 2 3 1 1 u 2 3 3 Y 2 1 Y N Y N 12/18/19 Y 46 46 46
W16 78 1/14/16 F 1 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 2 3 3 Y 2 2 U N U Y 5/5/16 6/2/16 N 6/2/16 5 4 5
W17 80 6/8/15 F 0 N Y- Crohn's disease N Y Infliximab N 1 3 3 3 3 3 3 3 3 1 1 u 3 3 3 N U N Y Y 9/8/16 10/24/16 Y 16 15 16
W18 66 1/13/17 F 0 N N N N 1 2 3 3 3 3 1 1 3 2 1 70 2 3 3 N N N Y Y 11/3/17 1/9/20 Y 36 10 36
W19 68 2/1/13 M u Y - history of prostate cancer treated with prostatectomy and XRT one year prior to diagnosis of PCNSL N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 4 N N N N 9/28/17 Y 55 55 55
W20 71 5/16/17 F u Y- History of colon cancer s/p colectomy and chemo N N N 1 2 3 3 3 3 2 1 3 2 1 80 3 3 3 Y 2 10 N N N N 9/19/19 Y 28 28 28
W21 74 10/10/16 F 1 N N N N 1 2 3 3 3 3 2 1 3 2 1 u 3 3 3 Y 2 3 N N N N 4/9/20 Y 42 42 42
W22 80 5/19/14 F u N N N N 1 3 3 3 3 3 3 3 3 3 3 u 3 3 3 N N N Y N 5/1/15 N 8/24/15 15 15 15
W23 68 9/14/18 F 2 Y- history of colorectal calcer in 1992 s/p resection and unknown chemo Y- SLE N Y Hydroxychloroquine N 1 2 1 1 2 2 1 1 3 2 1 u 2 3 3 Y 2 10 U N N N 4/28/20 Y 19 19 19
W24 74 3/27/17 M u N N N N 1 2 3 3 3 3 1 1 3 2 1 u 3 3 3 Y 2 2 U N N N 4/22/20 Y 37 37 37
W25 67 11/13/18 M 1 N N N N 1 3 3 3 3 3 3 3 3 3 3 u 3 3 3 Y 1 10 U N Y N 4/15/20 Y 17 17 17
W26 62 5/17/12 M u Y- IgM lymphoplasmatic lymphoma, treated with rituximab/fladarabine 9 years prior N N N 1 3 3 3 3 3 1 3 2 2 1 u 3 3 3 Y 1 10 Y N N Y Nov-13 6/4/15 N not known 36 18 36
W27 68 10/30/17 F u Y- concurrent RCC that was later resected N N N 1 2 2 1 2 2 1 1 2 2 1 u 3 3 3 Y 1 10 U N N Y 11/5/18 4/7/19 N 4/7/19 17 12 17
W28 61 6/24/13 F 3 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 2 N N Y N 1/9/19 Y 67 67 67
W29 73 7/8/11 F u N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 2 N N U Y Feb-17 2/27/17 Y 79 79 79
W30 64 4/23/12 F u N N N N 1 2 2 2 2 2 1 1 3 2 1 u 2 3 3 Y 2 2 N N N Y Dec-19 2/27/20 Y 94 92 94
W31 69 9/3/13 M 0 N N N N 1 3 3 3 3 3 3 3 3 3 1 68 2 3 3 Y 2 10 N N N Y Mar-16 9/11/19 Y 72 27 72
W32 69 5/16/14 M u N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 3 U N N N 9/2/14 Y 4 4 4
W33 71 5/2/14 F u N Y- lung transplant N Y Tacrolimus 1 mg bid, prednisone 7.5 mg qd, Myfortic 750 bid Y 1 1 3 3 3 3 3 3 3 3 3 1 u 1 3 3 Y 1 1 N N U Y 6/4/14 7/12/14 N 7/12/14 2 2 2
W34 84 4/13/17 F u N N N N 1 2 3 3 3 3 1 1 3 2 1 u 3 3 3 Y 1 10 U N N N 9/25/19 Y 29 29 29
W35 61 8/24/12 M u N N N N 1 3 3 3 3 3 3 3 3 3 1 50 3 3 3 Y 1 2 U N U Y Mar-15 8/26/15 Y 36 31 36
W36 70 11/21/18 M 1 N N N N 1 1 1 1 1 2 1 3 3 1 1 80 2 3 3 Y 2 2 N N U Y 7/30/19 7/31/19 N 7/31/19 8 8 8
W37 66 11/1/16 F 2 Y- laryngeal cancer in 2006 treated with radiation alone. N N N 1 1 2 1 2 2 1 3 3 1 1 u 3 3 3 Y 1 10 N N N N 12/5/19 Y 37 37 37
W38 66 7/6/12 M u N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 1 2 N N N N 5/4/17 Y 58 58 58
W39 70 9/9/13 M 2 Y- RCC resected in 2001 N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 3 N N N N 4/22/19 Y 67 67 67
W40 68 8/28/17 M 1 N N N N 1 1 3 3 3 3 1 1 2 1 1 u 3 3 3 Y 2 2 U N N N 1/5/18 N 1/5/18 5 5 5
W41 71 9/18/17 M u Y- HCC treated with radioembolization then liver transplant in 2013 Y- liver transplant 4 years prior N Y Everolimus Y 1 1 2 2 2 2 2 1 1 3 2 1 90 2 3 3 Y 2 1 N N U N 1/15/20 Y 28 28 28
W42 86 9/26/17 F 2 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 N U N Y N 1/17/18 Y 4 4 4
W43 78 6/6/11 F u Y- uterine cancer tx with radiation and hysterectomy N N N 3 B cell NHL 3 3 3 3 3 3 3 3 3 1 u 3 3 3 N U N Y Y Mar-14 2/3/16 Y 56 33 56
W44 80 3/19/13 M 2 N N N N 1 2 3 2 3 3 1 1 3 2 1 50 3 3 3 Y 1 10 U N N N 8/22/18 Y 65 65 65
NMH1 60 7/12/13 F 2 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 2 2 2 Y 1 4 N N u Y 10/3/13 3/20/15 N 5/8/15 22 3 22
NMH2 63 5/1/08 M 0 N N N N 1 1 2 3 2 3 3 3 2 1 1 u 2 2 2 Y 1 7 N N N Y 5/13/15 9/4/19 Y 136 84 136
NMH3 63 11/29/12 F 2 Y-colon cancer N N N 1 3 2 1 2 2 1 1 2 2 1 5 2 3 3 Y 2 1 N N N Y 3/12/15 6/22/16 N 7/12/16 43 28 43
NMH4 64 8/14/14 F 0 N N N N 1 2 2 3 2 3 1 1 2 1 1 80 2 2 2 Y 1 1 N N N Y 2/12/15 4/1/15 N 5/15/15 9 6 9
NMH5 73 9/13/11 M 0 y-prostate cancer-dx 2006, active surveillance w/ PSA 4, Gleason 3+3 N N N 1 3 3 3 3 3 1 1 1 1 1 80 2 2 2 Y 2 2 N N N Y 5/2/13 5/17/19 Y 92 20 92
NMH6 73 3/20/14 F 1 N N N N 1 3 2 2 2 2 1 1 1 2 1 60 2 2 2 Y 1 9 N N N N na 4/17/19 Y 61 61 61
NMH7 76 7/1/16 M 0 N N N N 1 1 1 2 2 2 1 1 1 1 1 80 2 3 3 Y 2 3 N N N Y 6/9/17 9/27/19 Y 38 11 38
NMH8 60 8/28/17 M 0 N N N N 1 2 1 1 1 2 2 1 1 2 1 60 2 2 2 N Y N Y Y 9/19/19 12/19/18 Y 28 13 28
UW3 73 9/1/15 M 2 u u u N u u 3 3 3 3 3 3 3 3 3 u 3 3 3 y 1 3 u u u na 9/22/15 N 9/22/15 0.5 0.5 0.5
UW5 65 7/8/14 M 1 N N N N 1 3 1 3 1 3 1 3 3 3 1 90 2 3 3 Y 1 2 N N N N 3/2/20 Y 68 68 68
UW6 70 12/15/11 F 1 N N N N 1 3 3 3 3 3 3 3 2 2 1 u 3 3 3 Y 1 2 N U Y Y 12/28/12 4/29/15 N 4/29/15 41 12 41
UW7 72 4/14/11 M 1 N N N N 1 2 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 1 1 N U N Y 8/2/11 5/20/12 N 5/20/12 13 4 13
UW8 73 10/1/13 M 0 N N N N 3 3 3 3 3 3 3 3 3 3 1 u 3 3 3 N N U Y N 11/29/19 Y 73 73 73
UW9 69 12/4/14 M 0 Y (SMALL CELL LYMPHOMA) N N N 1 3 3 3 3 3 3 3 2 2 1 "HIGH" 3 3 3 Y 1 2 N U N Y 6/22/18 2/25/19 N 2/25/19 50 42 50
UW10 60 11/27/13 M 1 N N N N 1 3 3 3 3 3 3 3 3 3 1 75 1 3 3 Y 1 1 N N N N 7/27/19 Y 68 68 68
UW12 67 8/10/08 F 1 Y (DLBCL UNRELATED OF STOMACH) N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 1 4 N U N Y 10/11/08 4/14/09 N 6/19/09 10 2 10
UW21 68 7/26/11 F 1 N N N N 3 INTRAVASCULAR 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 10 N U N N 4/27/20 Y 105 105 105
UW23 71 11/19/13 F 2 N Y (RA/SLE) N Y LOW DOSE ORAL MTX AND PLAQUENIL FOR RA/SLE N 1 3 3 3 2 2 1 3 2 1 1 u 3 3 3 Y 2 2 N U N Y 9/9/14 4/21/19 Y 65 10 65
UW24 77 3/19/10 M 1 Y (BASAL CELL) N N N 1 3 3 3 3 3 3 3 2 2 1 u 3 3 2 Y 2 2 N N N Y 9/23/10 4/20/11 N 4/20/11 13 6 13
UW33 73 9/22/10 F 1 Y (REMOTE CERVICAL) N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 2 2 Y 2 8 Y U U N 4/30/20 Y 115 115 115
UW36 68 12/17/14 F 0 N N N N 1 3 3 3 3 3 3 3 1 2 1 u 3 3 3 N U U Y Y 9/3/15 10/3/15 N 10/3/15 10 9 10
UW37 79 11/22/13 M 1 N N N N 1 u 3 3 3 3 3 3 1 2 1 70 1 3 3 Y 2 2 u U U N 5/21/20 Y 78 78 78
UW39 64 10/16/10 F 2 N N N N 1 3 3 3 3 3 3 3 3 3 1 90 3 3 3 Y 1 3 U U U Y 2/10/12 10/22/12 N 3/29/13 29 14 29
UW40 65 5/4/09 M 0 N N N N 1 3 3 3 3 3 3 3 3 3 3 u 3 3 3 Y 2 4 N U U N 10/19/16 Y 89 89 89
UW41 72 10/2/12 F 2 N N N N 1 3 3 2 3 3 1 2 3 1 1 35 2 3 3 Y 2 8 U U U Y 5/29/17 6/28/16 N 6/16/17 56 55 56
RU1 82 1/5/15 F 3 Y, breast ca s/p mastectomy N N N 1 2 3 1 3 3 3 1 3 2 1 90 2 3 3 Y 2 2 N N N N 11/3/17 N 34 34 34
RU2 77 12/1/14 F 0 N N N N 1 2 3 1 3 3 1 1 3 2 1 70 2 3 3 Y 2 7 N N Y N 6/11/16 N 6/15/16 18 18 18
RU3 68 4/28/08 F 1 N N N N 1 2 3 2 3 3 1 1 3 2 1 100 3 3 3 Y 1 1 N N u Y 12/21/17 5/4/20 Y 145 116 145
RU4 61 2/17/10 M 0 N N N N 1 3 3 3 3 3 1 3 2 2 1 u 3 3 3 Y 2 9 N N N Y 5/4/10 10/8/10 N 11/6/10 9 3 9
RU5 73 6/24/14 M 2 Y, skin BCC/SCC N N N 1 2 2 1 3 3 2 1 3 2 1 50 1 3 3 Y 2 7 N N N N 7/1/20 Y 72 72 72
RU6 65 6/29/09 M 2 N N N N 1 2 3 3 3 3 1 1 3 2 1 u 3 2 2 Y 1 2 N N N N 11/10/15 Y 77 77 77
RU7 67 6/14/12 F 2 N Y N Y cellcept 250mg BID, prednisone 7.5mg Y 2 3-polymorphic PTLD 3 3 3 3 3 3 3 3 3 1 u 1 3 3 Y 2 1 u N U N 8/27/13 N 8/31/13 14 14 14
RU8 62 10/27/08 M 3 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 2 N N N N 1/10/18 N 1/10/18 111 111 111
RU9 70 11/7/08 F u N N N N 1 2 3 1 3 3 1 1 3 2 1 63 3 3 3 Y 1 2 N N Y Y 1/27/09 3/25/09 N 10/-/2009 9 2 9
RU10 74 10/1/08 M u N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 4 Y U U u 3/3/20 N 3/3/20 136 136 136
RU11 78 6/20/11 F 1 N N N N 1 1 3 2 3 3 1 1 3 1 1 80 2 3 3 y 2 1 N N N N 5/30/20 Y 108 108 108
RU12 70 8/20/09 M 4 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 10 N N N Y 9/19/14 1/22/18 N 9/27/18 109 61 109
RU13 65 8/4/10 M 3 N N N N 1 3 3 3 3 3 2 3 3 3 1 u 3 3 3 Y 1 10 N N N N 10/17/10 N 12/30/10 2 2 2
RU14 70 2/14/11 F 1 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 1 7 N N N Y 6/24/2014 (vitreal) 6/25/20 Y 112 40 112
RU15 79 9/30/11 F 1 Y, breast cancer N N N 1 3 3 3 3 3 3 3 2 2 1 u 3 3 3 Y 1 1 U N N na 10/13/11 N 11/27/11 2 2 2
RU16 85 6/7/12 M 3 N N N N 1 1 3 1 3 3 1 1 3 1 1 90 2 3 3 Y 1 9 u u N N 9/16/12 N 1/3/13 7 7 7
RU17 80 11/5/12 M 1 N N N N 1 1 2 1 3 3 1 1 3 1 1 70 2 3 3 Y 1 2 N N N N 3/21/01 N 3/26/18 64 64 64
RU18 69 12/3/12 F 1 N N N N 1 2 3 2 3 3 1 1 3 2 1 u 2 3 3 Y 2 8 N N N Y 4/15/2014 (occular lymphoma) 5/6/20 Y 69 16 69
RU19 63 2/19/14 F 2 Y, uterine ca N N N 1 U 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 8 Y N N Y 7/11/17 7/21/17 N 7/17/17 41 41 41
RU20 71 6/14/13 F 4 Y, endometrial N N N 1 2 3 1 3 3 1 1 3 2 1 80 3 3 3 Y 1 9 u u u N 8/10/13 N ? 2 2 2
RU21 76 3/3/14 M 4 N N N N 1 1 3 3 3 3 2 1 3 1 1 80 3 3 3 Y 2 3 U N N N 7/6/14 N 9/13/14 6 6 6
RU22 71 4/24/14 M 0 N N N N 1 2 1 1 2 3 1 1 3 2 1 40 3 3 3 Y 2 3 N N N N 6/24/20 Y 74 74 74
RU23 69 12/9/14 F 0 N N N N 1 2 2 2 3 3 1 1 3 2 1 90 3 3 3 Y 1 6 N N N Y 8/16/17 6/21/20 Y 66 32 66
RU24 68 1/15/15 F 2 N N N N 1 2 1 1 3 3 1 1 3 2 1 60 3 3 3 Y 2 2 N N N N 11/20/19 Y 58 58 58
RU25 77 7/27/15 F 1 Y, breast cancer N N N 1 2 1 1 3 3 3 1 3 2 1 70 3 3 3 N 2 2 N N N N 5/28/20 Y 58 58 58
RU26 84 3/20/17 M 3 N Y N Y sirolimus 1mg daily, MMF 360BID Y 1 1 2 1 1 3 3 2 1 2 2 1 90 2 3 3 Y 2 2 U Y N N 1/17/20 Y 34 34 34
RU27 61 4/13/18 F 0 N N N N 1 2 1 1 3 3 1 1 3 2 1 60 3 3 3 Y 1 2 N N N N 6/13/20 Y 26 26 26
RU28 76 12/8/17 F 2 Y, breast, RCC Y N Y sirolimus 1mg daily, mycophen 360 bid Y 1 1 2 2 1 3 3 2 1 3 2 1 30 1 3 3 Y 1 3 N N N N 3/6/19 N 3/11/19 15 15 15
RU29 81 5/8/17 M 2 Y, melanoma/SCC N N N 1 2 1 1 3 3 1 1 3 2 1 80 2 3 3 Y 2 10 N N N N 5/27/20 Y 36 36 36
RU30 97 1/13/17 F 2 Y, skin BCC/SCC N N N 1 2 2 2 3 3 1 1 3 2 1 80 2 3 3 Y 2 9 N N N N 6/2/20 Y 41 41 41
RU31 78 3/11/20 M 4 N N N N 1 1 3 3 1 3 3 3 3 1 1 U 3 3 3 Y 2 10 y N N N 3/15/20 N 3/15/20 1 1 1
RU32 78 4/22/16 M 3 N Y N Y Arava 20, cellcept 500mg BID, pred 5 Y 1 1 2 2 2 3 3 1 1 3 2 1 60 1 3 3 Y 2 3 N N N N 5/6/16 N 5/6/16 0.5 0.5 0.5
RU33 65 9/19/19 F 4 N N N N 1 2 1 1 2 2 1 1 2 2 1 90 2 3 3 Y 1 3 N N N Y 10/30/19 11/1/19 N 11/1/19 2 2 2
RU34 66 4/25/18 M 4 N N N N 1 2 2 1 3 3 1 1 3 2 1 70 2 3 3 Y 2 2 N N N U 6/11/18 N 7/27/18 3 3 3
RU35 62 12/13/16 M 4 N N N N 1 2 1 1 3 3 1 1 3 2 1 80 2 3 2 Y 2 2 N y N N 12/30/16 N 12/30/16 1 1 1
RU36 67 10/2/17 F 4 N N N N 1 1 1 1 2 2 1 1 3 1 1 80 2 3 3 Y 2 5 N N N Y 11/12/17 1/30/18 N ? 3 1 3
RU37 73 6/6/16 M 2 Y, prostate ca N N N 1 1 1 1 1 3 1 1 3 1 1 60 2 3 3 Y 2 3 N N N Y 11/7/16 7/5/17 N 7/8/17 13 5 13
RU38 70 7/10/16 F 3 Y, breast cancer N N N 1 2 3 3 3 3 1 1 3 2 1 u 3 3 3 Y 1 2 N N N N 6/8/20 Y 47 47 47
RU39 71 6/9/17 M 0 Y-CLL. Rai stage 0, Never treated N N N 1 2 1 1 2 3 1 1 3 2 1 70 2 3 3 Y 1 7 N N N N 5/19/20 Y 35 35 35
RU40 69 7/21/17 F 3 N Y-RA N N 1 2 2 1 3 3 2 1 3 2 1 90 2 3 3 Y 1 7 N N N Y 2/21/18 3/28/18 N 3/31/18 8 7 8
RU41 76 7/20/17 M 3 N N N N 1 2 3 1 3 3 2 1 3 2 1 90 2 3 3 Y 2 2 N N N Y 12/22/17 4/21/18 N 6/7/18 11 5 11
RU43 75 10/13/17 F 4 Y, localized bladder cancer N N N 1 3 3 3 3 3 3 3 3 3 1 u 2 3 2 Y 2 2 N N N Y 11/13/17 11/22/17 N 11/22/17 1 1 1
RU44 63 7/6/18 M 0 N N N N 1 2 2 2 2 3 2 1 3 2 1 u 2 3 3 Y 2 3 N N N N 1/31/20 Y 18 18 18
RU45 62 1/30/20 M 0 N N N N 1 2 1 2 1 2 2 1 3 2 1 u 2 3 3 Y 1 3 N N N Y 6/10/20 6/15/20 Y 5 5 5
RU46 67 9/10/18 M 1 N N N N 1 1 1 1 2 3 1 1 3 1 1 80 2 3 3 Y 2 2 N N N N 3/13/20 Y 18 18 18
RU47 12/3/18 F 3 N N N N 1 2 3 3 2 2 1 1 3 2 1 70 2 3 3 Y 1 8 N N N Y 2/26/19 4/26/19 N 5/2/19 5 3 5
RU48 81 10/9/19 M 4 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 1 2 N N N N 11/5/19 Y 1 1 1
R-02 60 2/26/12 F 0 N N N N 1 2 3 1 3 1 1 2 2 1 80 2 3 3 Y 2 2 U N N N 11/28/2019 Y 93 93 93
R-03 61 1/7/09 F u N N N N 2 3 1 3 3 2 3 1 2 1 5 3 3 3 N 10 U N N N 05/02/2010 Y 16 16 16
R-07 62 6/27/11 M 2 Y, RCC S/P ABLATION & SKIN CANCER S/P RESECTION N N N 1 U 3 3 3 3 3 1 3 2 1 u 2 3 3 Y 1 2 U N N Y 03/17/2013 10/24/2013 N 12/20/2013 30 21 30
R-09 65 2/5/07 M 2 N N N N 1 2 3 1 3 3 1 1 1 2 1 95 3 2 2 Y 2 1 Y U N N 01/10/2010 N 12/14/2012 70 70 70
R-10 65 7/10/09 M 2 N N N N 1 2 3 3 3 3 3 1 3 2 1 50 3 3 3 Y 2 3 U U N N 10/06/2015 Y 75 75 75
R-11 65 1/23/13 M 2 N N N N 1 3 2 1 2 2 1 1 3 2 2 90 1 3 3 Y 1 10 N N N Y 11/26/2013 01/06/2014 Y 12 10 12
R-12 66 11/26/11 F 1 Y, BCC s/p resection N N N 1 2 3 1 3 3 1 1 2 2 1 90 3 3 3 Y 2 1 U N N N 12/29/2014 y 37 37 37
R-15 67 3/30/06 M 1 Y, Prostate Cancer (s/p prostatectomy) N N N 1 2 3 1 2 3 1 1 2 2 1 95 3 3 3 Y 2 2 N N N Y 09/24/2006 03/23/2013 y 84 6 84
R-17 68 7/14/06 F 1 N N N N 1 1 3 3 3 3 3 1 2 1 1 95 3 3 3 Y 1 2 U U N Y 08/18/2008 05/09/2009 N 05/25/2009 34 25 34
R-20 69 9/20/05 M 1 N N N N 1 1 3 1 3 3 1 3 3 1 1 90 3 3 3 Y 2 2 U U N Y 12/11/2005 01/09/2006 N 01/13/2007 16 3 16
R-21 69 10/19/08 F 1 N N N N 1 2 3 2 3 3 1 1 2 2 1 80 3 3 3 Y 1 1 U U N Y 05/05/2014 06/10/2014 N 06/12/2014 68 67 68
R-22 69 6/20/09 F 2 N N N N 1 1 3 1 3 3 1 1 2 1 1 90 3 3 3 Y 2 4 N N N N 09/21/2014 Y 63 63 63
R-23 69 10/9/10 F 1 N N N N 1 2 3 1 3 3 1 1 1 2 1 80 3 3 3 Y 2 4 N U Y N 02/21/2014 Y 40 40 40
R-25 70 4/7/13 M 1 N N N N 1 3 2 2 3 3 1 1 3 3 1 90 3 3 3 Y 1 2 U N N N 01/04/2015 Y 21 21 21
R-27 71 1/1/09 F 1 N N N N 1 2 1 1 3 3 1 1 2 2 1 90 3 3 3 Y 1 3 U U N N 12/20/2010 Y 23 23 23
R-29 72 2/11/13 F 1 N N N N 1 1 2 1 3 3 1 2 2 2 1 90 2 3 3 Y 2 2 U U N Y 05/21/2013 12/30/2014 Y 22 3 22
R-30 73 3/7/06 M u N N N N 1 2 3 1 3 3 1 1 3 2 1 60 3 3 3 Y 2 2 U N N Y 05/06/2006 06/30/2006 N 07/03/2006 5 2 5
R-31 73 10/3/07 F u N N N N 1 2 3 1 3 3 2 1 1 2 1 80 3 3 3 Y 2 4 U U N Y 04/30/2013 03/11/2013 N 06/09/2013 68 66 68
R-37 76 12/26/11 F 1 Y, CLL TREATED 12 YEARS EARLIER WITH FR, IN REMISSION N N N 2 3 3 3 3 2 3 2 2 1 10 3 3 3 N 10 U N U Y 07/12/2014 07/21/2014 N 09/21/2014 33 31 33
R-40 78 2/24/11 M 1 N N N N 1 2 3 1 2 2 1 1 2 2 1 90 3 3 3 Y 2 1 N N N Y 07/28/2012 03/10/2013 N 03/30/2013 25 17 25
R-41 79 7/19/09 F 1 N N N N 3 HGBCL, all by flow from CSF 1 3 3 3 3 3 3 2 1 1 u 3 3 2 N 10 Y Y N N 09/18/2009 N 10/01/2009 3 3 3
R-45 82 10/19/05 F 2 N N N N 1 2 3 1 3 3 1 1 3 3 1 60 3 3 3 Y 2 10 N N N Y 12/22/2005 07/13/2007 N 09/29/2007 24 2 24
R-49 84 9/13/07 F 1 N N N N 1 3 2 1 3 3 3 1 2 3 1 u 3 3 3 Y 1 2 U U N N 01/09/2008 N 01/09/2008 4 4 4
R-53 88 12/3/08 M 3 Y, PROSTATE CANCER ON BICALUTAMIDE N N N 1 2 2 1 3 3 1 1 2 2 1 90 3 3 3 Y 2 2 U N N Y 01/14/2009 01/14/2009 N u 1 1 1
R-54 88 3/8/09 M 3 Y, PROSTATE CANCER & BASAL CELL CA OF SKIN N N N 1 3 3 3 3 3 3 1 3 3 1 100 3 3 3 Y 2 2 N N U N 03/13/2009 N 03/13/2009 1 1 1
O1 75 9/28/18 F 1 N N N N 1 2 1 1 2 2 1 1 2 2 1 90 2 3 3 Y 2 3 u u N N 11/7/19 Y 14 14 14
O2 78 9/2/16 F 0 N N N N 1 2 1 1 3 3 1 1 2 2 1 90 2 3 2 Y 1 10 N u N N 3/17/20 Y 42 42 42
O3 71 10/18/17 F u N N N N 1 2 1 1 2 3 1 1 2 2 1 80 3 3 3 Y 2 1 N u N N 2/26/18 N 3/1/18 4 4 4
O4 72 8/14/17 M 2 N N N N 1 1 2 1 2 3 1 1 1 2 1 90 3 2 2 Y 2 2 N N N N 12/18/19 Y 28 28 28
O5 81 5/25/18 F 1 N Y (RA) N Y Hydroxychloroquine N 3 low grade mature B cell lymphoma (further diagnostics not pursued per pt insistence) 3 3 3 3 3 3 3 1 2 1 u 3 3 3 N 10 Y u N N 5/14/20 Y 24 24 24
O6 66 5/31/14 F 3 Y-melanoma N N N 3 Mantle cell blastoid variant 3 3 1 3 1 1 3 1 3 1 80 2 2 2 N 10 Y Y u N 8/16/14 N 9/14/20 2.5 2.5 2.5
O7 64 7/19/15 F 2 N N N N 1 3 3 1 3 2 1 1 2 2 1 80 3 3 3 Y 1 10 N N N N 6/22/20 Y 59 59 59
O8 78 5/5/14 F 2 N N N N 1 3 3 1 2 1 1 1 2 2 1 u 3 3 3 Y 1 2 u N N Y 1/13/16 12/21/17 N 1/21/18 44 20 44
O9 67 6/14/18 F 1 N Y (kidney) N Y tacrolimus N 1 3 1 1 2 2 1 1 2 1 1 95 2 3 3 Y 2 1 N u N N 3/10/20 Y 21 21 21
O10 86 12/30/13 M 0 Y, prostate N N N 1 2 1 1 3 3 2 3 3 2 1 90 2 3 3 Y 1 10 u u u N 12/28/16 N 12/28/16 36 36 36
O11 71 1/17/18 M 1 Y, colon N N N 1 3 1 1 2 2 1 3 3 1 1 80 2 3 3 Y 1 2 u u Y N 2/14/19 Y 13 13 13
O12 74 3/16/18 M 0 Y, prostate N N N 1 2 1 1 3 3 1 1 2 2 1 u 2 3 3 Y 1 3 u u N N 2/12/20 Y 23 23 23
O13 72 12/27/13 F 2 Y, breast N N N 1 2 3 1 3 3 1 1 3 2 1 100 2 3 3 Y 2 2 N N N N 6/19/14 N 9/2/14 9 9 9
O14 63 8/26/14 M 2 N N N N 1 1 1 2 3 3 1 2 2 1 1 95 2 3 3 Y 2 10 N N N Y 12/8/15 5/6/20 Y 69 16 69
O15 72 3/29/17 F 2 Y, colon N N N 1 2 3 1 3 3 1 1 3 2 1 80 3 3 3 Y 2 10 N u N Y 8/24/17 9/13/17 N 10/27/17 7 5 7
O16 60 6/5/09 F 1 N N N N 1 3 3 1 3 3 1 3 2 2 1 90 2 3 3 Y 2 10 N u N N 12/19/19 Y 126 126 126
O17 77 5/4/16 F u N N N N 1 1 1 2 3 3 1 3 2 1 1 100 2 3 3 Y 2 10 N u N Y 1/3/17 3/13/17 N 5/18/17 12 8 12
O18 63 2/27/13 F 1 Y, breast Y limited systemic scleroderma N N N 1 3 3 3 3 3 3 3 3 3 3 u 3 3 3 Y 1 10 N u Y Y 6/11/19 6/26/20 Y 88 76 88
O19 63 1/15/16 F 2 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 2 3 3 Y 2 10 N N N Y 5/24/16 5/26/16 N 5/26/16 4 4 4
O20 70 11/14/09 M u N N N N 1 2 3 3 3 3 1 1 2 2 1 70 2 2 3 Y 2 8 N N N Y 7/6/10 10/14/10 N 1/18/11 14 8 14
O21 67 7/17/09 M 1 N N N N 1 2 3 3 3 3 2 1 2 2 1 u 3 3 3 Y 2 1 U N Y Y 12/01/2009, 11/2010, 9/2015, 4/27/2016 6/8/16 Y 85 5 85
O22 61 7/6/08 F u N N Y N N 1 3 3 1 3 1 1 3 2 3 1 u 3 3 3 Y 1 2 U N Y Y 9/3/2008, 10/28/2010, 2/14/2013 7/10/14 Y 72 2 72
O23 64 8/10/10 F 2 Y- inflammatory breast CA 1991 N N Y hydrocortisone N 1 1 3 1 3 1 1 1 2 1 1 70 2 2 2 Y 1 5 N Y N N 6/29/11 N 11/27/11 15 15 15
O24 61 9/21/10 M u N N N hydrocortisone N 1 3 3 2 3 1 1 3 2 2 1 90 3 3 3 Y 2 5 N N Y Y 6/21/11 11/8/17 N 3/20/18 90 9 90
Ru1 76 11/8/12 F 1 N N N N 1 2 3 2 3 3 1 1 3 2 1 80 2 3 3 Y 1 7 n N n Y 3/5/13 05/2013 N 06/2013 7 4 7
Ru2 64 6/22/10 M 0 N N N N 1 1 3 3 3 3 3 1 2 1 1 90 3 3 3 Y 2 1 N N u Y 3/26/12 06/2012 N 06/2012 24 21 24
Ru3 73 9/16/13 M 1 N N N N 1 3 3 3 1 1 2 1 3 2 1 80 2 3 3 Y 1 3 U U N Y 2/6/14 02/2014 Y 5 5 5
Ru4 62 8/13/15 M 1 N N N N 1 3 3 3 3 3 3 3 3 3 1 100 3 3 3 Y 1 2 N N N u 12/2015 y 4 4 4
Ru5 64 8/7/14 F 3 N Y (SLE) N Y Hydroxychloroquine, Mycophenolate mofetil N 1 3 2 3 2 1 2 1 1 2 1 50 1 2 3 Y 2 2 U U U N 01/2020 Y 65 65 65
Ru6 64 5/1/09 F u N N N N 1 3 3 3 3 3 3 3 3 3 3 u 3 3 3 Y 1 7 U U U Y 4/4/12 02/2019 Y 117 35 117
Ru7 77 1/10/18 M 2 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 1 N N N Y 3/30/18 07/2018 Y 6 2 6
Ru8 61 4/10/18 M 1 N N N N 1 2 2 3 2 1 1 1 2 2 1 99 3 3 3 Y 2 2 U N N N 11/2018 Y 7 7 7
Ru9 74 10/2/14 F 1 Y (stage one b/l breast cancer 8 years apart, both treated with mastectomy; right also treated with axillary lymph node dissection; did not receive chemo, hormone tx, or radiation) N N N 1 3 2 2 1 2 1 1 3 2 1 95 2 3 3 Y 2 1 N N N N 11/2018 N 11/2018 49 49 49
Ru10 86 10/16/14 F 2 Y (basal cell carcinoma surgery 4 years prior to lymphoma diagnosis) N N N 3 brain biopsy tissue was involved by B cell lymphoma is insufficient to definitely characterize but large B cell lymphoma is favored 3 3 3 1 1 1 3 2 1 70 2 3 3 Y 1 9 U U N u 12/2018 Y 50 50 50
Ru11 70 7/26/11 F 3 Y (, breast cancer (ER/PR +, her2/neu unknown; 13 years prior to lymphoma diagnosis s/p mastectomy & local radiation therapy as well as tamoxifen for 5 years) N N N 1 3 3 2 3 2 3 1 3 2 1 90 3 3 3 Y 2 3 U U U Y 9/18/12 5/2013 N 22 14 22
Ru12 63 8/15/12 M 1 N N N N 1 2 3 3 3 3 1 1 3 2 1 90 3 3 3 Y 2 3 U N Y Y 10/XX/2013 04/2015 Y 32 14 32
Ru14 66 4/8/15 F u N N N N 1 3 3 3 3 3 3 3 3 3 1 90 3 3 3 Y 1 1 U U U Y 01/2016 Y 9 8 9
Ru15 70 11/20/14 F 4 N N N N 1 3 3 3 3 1 1 3 1 3 1 u 3 3 3 Y 1 3 U U U N 03/2019 Y 52 52 52
Ru16 68 1/5/18 F 2 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 2 3 Y 1 11 N N Y N 06/2020 Y 29 29 29
Ru17 67 4/17/17 F 3 Y (throid cancer 10 yrs prior in 2007, s/p thyroidectomy) N N N 1 2 3 3 1 1 3 3 1 2 1 u 3 3 2 Y 1 2 N N N N 09/2017 N 09/2017 5 5 5
Ru18 66 10/12/15 F u N N N N 1 2 2 2 2 2 2 1 2 2 1 u 2 3 3 U U U U U U u 11/2015 Y 1 1 1
Ru20 62 5/9/18 M 4 N N N N 1 2 2 1 2 1 1 1 2 2 1 95 3 2 2 Y 2 9 N N N N 12/2018 Y 7 7 7
Ru21 77 7/29/13 F 4 Y (breast ca s/p lumpectomy & radiation; treated with anastrazole) N N N 1 2 3 2 3 2 1 1 2 2 1 U 2 3 2 Y 1 1 Y U U u 11/2013 Y 4 4 4
Ru22 60 7/28/16 F 3 N N N N 1 2 3 2 3 2 1 1 1 2 1 U 3 2 3 Y 1 2 u U N Y 9/18/16 10/2018 N y 3 2 3
Ru24 80 11/8/10 M u N N N N 1 2 3 2 3 2 1 1 2 2 1 U 3 3 3 Y 2 2 u U U u 11/2013 y 1 1 1
Ru25 70 11/4/13 M u N Y N Y Mycophenolate mofetil, Tacrolimus, Prednisone Y 1 1 3 3 3 3 1 1 1 3 2 1 60 1 3 3 Y 2 2 N U U N 06/2016 Y 31 31 31
Ru26 72 1/30/14 F u N N N N 1 2 2 3 1 1 1 1 3 2 1 U 2 3 3 Y 2 2 u U U na 1/30/14 N u 1 1 1
Ru28 64 8/6/14 M u Y (prostate cancer, stage 2s, gleason 7, treated with lupron; not otherwise treated, was going to pursue definitive treatment but was diagnosed with DLBCL ) N N N 1 1 2 3 2 1 1 3 3 1 1 U 2 3 3 Y 2 2 u U U N 02/2015 Y 6 6 6
Ru30 76 6/30/17 F u Y (BCC of clavicle, excised 7 years prior to dx of lymphoma; BCC of ear, excision also 7 years prior to dx of lymphoma; BCC of shoulder, SCC cheek 4 yrs prior) N N N U 3 3 3 3 3 1 3 3 1 1 U 2 3 3 Y 2 1 N U U u 07/2017 Y 2 2 2
Ru31 80 10/4/18 F 3 N Y N Y Mycophenolate mofetil, Tacrolimus Y Unknown 1 3 3 2 2 1 1 1 2 2 1 18 1 3 3 Y 1 6 u U U u 10/2018 N 10/2018 1 1 1
Ru32 72 7/12/19 F u N N N N 1 2 3 3 1 1 1 1 3 3 1 90 2 3 3 Y 2 9 U U U u 12/19/2019 Y 5 5 5
Ru33 80 7/9/19 F u N N N N 1 2 2 3 2 1 2 1 2 2 1 80 2 3 3 Y 2 7 U U U Y 8/12/19 09/2019 Y 2 1 2
Ru34 76 12/5/16 M 2 Y - prostate, SCC skin N N n 1 2 1 1 1 2 1 1 3 2 1 90 3 3 3 Y 2 1 U U u u 02/2017 Y 2 2 2
V001 60 4/26/11 F 1 N Y N Y Tacrolimus Y 1 1 2 3 3 3 3 3 1 3 2 1 80 1 2 2 Y 1 10 N u N N 5/11/12 N 5/13/12 13 13 13
V002 61 5/12/06 M 1 N N N N 1 2 3 3 3 3 3 3 3 2 1 u 2 2 2 Y 2 2 N u N Y 5/1/08 6/10/09 N 10/3/11 65 24 65
V003 62 6/26/13 F 0 N N N N 1 2 3 3 3 3 3 3 3 2 1 80 2 2 2 Y 1 1 N u N Y 3/18/14 7/9/15 N 7/9/15 25 9 25
V004 66 5/14/15 M 1 N N N N 1 2 1 3 3 3 3 1 3 2 1 80 2 3 3 Y 1 2 N u N Y 5/20/16 5/20/16 N 5/20/16 12 12 12
V005 67 1/27/11 M 0 N N N N 1 3 3 3 3 3 3 3 3 2 1 90 2 3 2 Y 2 2 N u N Y 4/26/11 5/17/11 N 5/17/11 4 3 4
V006 67 9/28/09 M 1 N N N N 1 3 3 3 3 3 3 3 3 1 1 70 2 2 3 Y 2 2 N u Y Y 12/16/09 1/6/10 N 2/5/10 5 3 5
V007 68 2/14/14 F 0 N N N N 1 2 3 1 3 3 1 1 3 2 1 90 2 3 2 Y 2 3 N u N Y 9/16/14 12/24/14 N 12/24/14 10 7 10
V008 70 8/15/13 F 0 N N N N 1 1 3 1 3 1 3 3 3 1 1 95 2 3 3 Y 1 2 N u N Y 9/18/13 1/30/14 N 1/30/14 5 1 5
V009 70 5/3/13 F 0 Y (MYELOMA) N N N 1 3 3 3 3 3 3 3 3 1 2 60 2 3 3 Y 2 4 N N N Y 7/16/13 11/6/13 N 1/16/14 8 2 8
V010 71 9/14/09 M 1 N N N N 1 3 3 3 3 3 3 3 3 3 1 80 2 3 2 Y 1 10 N N N N 11/1/09 N 11/1/09 2 2 2
V011 74 2/24/09 M 1 N N N N 1 3 3 3 3 3 3 3 3 1 1 u 2 3 3 N N Y u Y 1/27/10 12/1/09 N 1/27/10 12 12 12
V012 76 7/24/14 F 1 N N N N 1 3 3 1 3 2 2 3 1 1 1 70 2 3 2 Y 2 2 N u N N 8/16/14 n 8/16/14 1 1 1
V013 77 11/18/13 F 1 N N N N 1 2 3 2 2 2 2 1 2 2 1 70 2 3 3 Y 1 10 u u N N 1/14/14 N 1/18/14 2 2 2
V014 77 1/21/10 M 1 N N N N 1 1 3 1 2 2 2 3 3 1 1 80 2 3 2 Y 2 10 N u N N 2/16/10 N 2/16/10 1 1 1
V015 78 10/18/12 M 1 N N N N 1 2 3 3 2 2 3 3 2 1 1 u 2 2 2 Y 1 2 Y Y N Y 12/1/12 11/16/12 N 12/1/12 2 2 2
V016 79 3/25/13 F 0 N N N N 1 2 3 1 3 3 1 1 3 2 1 70 2 3 2 Y 2 2 N N Y Y 9/1/15 12/28/15 N 10/19/16 43 30 43
V017 81 2/14/14 F 1 N N N N 1 3 3 3 3 3 3 3 2 1 1 100 2 2 2 Y 1 2 N u N Y 3/11/14 N 3/11/14 1 1 1
V018 67 3/3/16 M 0 N N N N 1 2 3 1 3 2 3 1 3 1 1 80 2 3 3 Y 2 3 N N N N 7/2/20 Y 52 52 52
V019 60 12/22/16 F 0 N N N N 1 2 3 3 2 2 3 1 3 1 1 90 2 3 3 Y 2 1 N N N N 5/2/20 Y 42 42 42
V020 67 1/3/17 F 0 N N N N 1 2 3 3 2 2 3 1 3 2 1 80 2 3 2 Y 1 3 Y u N N 9/21/19 Y 32 32 32
V021 60 6/26/17 F 1 N N N N 1 3 3 1 3 3 3 2 2 2 1 70 2 3 2 Y 1 10 Y u N N 5/15/20 Y 35 35 35
V022 61 10/27/17 M 0 N N N N 1 3 3 2 3 2 3 3 2 3 1 80 2 3 3 Y 1 10 N u N N 6/3/20 Y 32 32 32
V023 69 1/15/18 M 0 N N N N 1 2 3 3 3 3 3 1 3 2 1 80 2 3 2 Y 1 2 N N N N 7/15/19 Y 18 18 18
V024 68 11/21/18 M 0 N N N N 1 2 3 3 2 2 3 3 2 1 1 u 3 3 3 Y 1 3 N N N N 6/3/19 Y 7 7 7
Mi3 72 10/17/11 F u Y, DCIS (R breast) Y N Y cyclosporine, prednisone Y 1 1 3 3 1 3 3 2 1 2 2 1 60 1 2 2 Y 2 10 N N N Y 1/3/12 3/2/12 N Mar-12 5 3 5
Mi4 64 3/23/12 F 0 Y, non-Hodgkin lymphoma (breast, CR) N N N 1 3 3 3 3 3 3 3 3 2 1 u 3 3 3 Y 2 1 N N N Y 3/15/13 8/8/14 N Aug-14 29 12 29
Mi5 60 7/26/06 F 0 N N N N 1 3 3 3 3 3 3 3 3 3 3 u 3 3 3 N N N N Y 4/23/12 5/16/12 N Oct-12 75 69 75
Mi6 70 5/27/14 F 0 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 1 N N N Y 9/30/14 12/7/15 Y Unknown 19 4 19
Mi10 73 4/4/15 M 0 N N N N 1 3 3 1 2 2 2 3 2 2 2 u 3 3 3 Y 2 1 N N N Y 4/11/20 4/28/20 N Jun-20 62 60 62
Mi11 67 12/8/17 M 1 N N N N 1 1 2 2 2 2 1 2 3 1 1 90 1 3 3 Y 2 2 N N N Y 3/5/18 5/11/20 Y Unknown 29 3 29
Mi13 73 2/3/16 F 2 N N N N 1 2 2 3 2 2 1 1 2 2 1 90 2 3 3 N N N Y Y 6/29/16 7/21/16 N Aug-16 6 4 6
Mi15 66 5/4/17 M u N Y N Y MMF, Sirolimus, prednisone Y 1 1 2 1 1 3 3 2 1 2 2 1 70 1 1 1396 3 Y 1 3 N N N Y 5/30/17 6/13/17 N Jul-17 2 1 2
Mi19 76 6/15/10 F u N N N N 1 3 3 1 3 3 1 1 2 2 1 90 2 3 3 N N N N Y 2/1/11 11/21/11 N Dec-11 18 8 18
Mi24 61 4/29/13 F u N N N N 1 3 3 3 3 3 3 3 3 3 3 u 3 3 3 N N Y Y N 12/19/19 Y 80 80 80
Mi30 87 6/17/08 F u y, Frontal lobe meningioma (dx: 10/2017 w/o biopsy) N N N 1 3 3 2 2 2 3 3 1 1 1 u 3 3 3 Y 1 2 N N N Y 9/23/08 11/28/08 N u 5 3 5
Mi33 84 9/11/17 M 0 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 2 U N N Y 2/5/18 5/16/18 N Aug-18 11 5 11
Mi36 71 9/2/09 F 3 N N N N 1 1 3 1 3 3 1 3 2 2 1 80 3 3 3 Y U 4 Y N Y N 1/26/15 Y 64 64 64
Mi38 77 2/17/10 M u N N N N 1 3 3 3 3 3 3 3 3 3 3 u 3 3 3 N N N N Y 4/16/10 4/19/10 N Apr-10 2 2 2
Mi40 66 6/28/11 F 4 N Y N Y Plaquenil, Cellcept, Cyclosporine, steroids Y 1 1 3 3 3 3 3 3 3 3 3 1 u 1 2 2 Y 2 2 N N N Y 7/20/11 12/7/11 N u 6 1 6
Mi41 71 11/19/13 M 1 Y, prostate cancer N N N 1 2 3 1 3 3 2 2 2 2 1 70 2 3 2 Y 1 2 N N N N 5/19/20 Y 78 78 78
Mi42 63 9/21/10 M u N Y (panc) N Y CellCept, tacrolimus Y Unknown 1 3 3 3 3 3 3 3 3 3 1 u 1 2 3 Y 2 2 N N N N 5/12/15 N May-15 56 56 56
Mi45 73 7/21/12 F u Y, NHL of breast + cervical cancer Y N Y Myfortic, prednisone, CSA N 1 3 3 3 3 3 3 3 3 3 1 u 2 3 3 Y 2 2 U N N Y 10/29/12 11/24/12 N Nov-12 4 3 4
Mi46 76 11/2/16 F u N N N N 3, extensive plasmacytic differentiation such as MZL or lymphoplasmacytic lymphoma) 3 3 3 3 3 3 3 3 2 u 3 3 3 N N N Y N 7/9/19 Y 32 32 32
IA3 77 5/13/13 M 2 N N N N 1 2 3 3 2 2 1 1 2 2 1 90 3 3 3 Y 2 2 N N N N 06/23/2013 N 06-2013 1 1 1
IA4 64 4/5/13 M 1 Y (prostate cancer, localized, 8 years prior) N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 1 4 N N u N 09/27/2017 Y 53 53 53
IA5 63 10/6/13 M 2 Y (prostate cancer, localized) N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 1 11 N y u N 12/03/2015 Y 26 26 26
IA6 61 12/2/13 M 2 N N N N 1 1 3 3 3 3 1 1 3 1 1 u 3 3 3 Y 2 3 u N N N 11/06/2017 Y 47 47 47
IA7 77 4/21/14 F 1 Y (endometrial, 12 yrs prior) N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 1 8 N N N Y 01/04/2015 06/16/2015 N 06-2015 14 9 14
IA8 70 7/9/15 F 1 Y (polycythemia vera) N N N 1 2 1 1 3 3 2 1 3 2 1 90 1 3 3 Y 1 1 u N N N 12/06/2016 Y 17 17 17
IA9 81 9/6/14 M 3 N N N N 1 2 2 2 3 3 3 3 3 3 1 80 3 3 3 Y 1 10 N N u na 09/21/2015 N 09-2015 12 12 12
IA10 70 10/3/15 M 1 N N N N 1 2 2 2 3 3 1 1 2 2 1 60 2 3 3 y 2 7 N N N N 12/15/2018 Y 38 38 38
IA11 70 5/12/16 F 1 N N N N 1 2 1 1 3 3 1 1 3 2 1 90 3 3 3 Y 1 6 N N N Y 9/8/19 09/09/2019 N 09-2019 40 40 40
IA12 74 6/25/16 M 2 Y (MDS) N N N 1 2 1 1 3 3 1 1 2 2 1 90 3 3 3 Y 1 6 N N N Y 10/2/16 06/03/2018 N 06-2018 24 3 24
IA13 67 7/9/16 M 0 N N N N 1 2 1 1 3 3 1 1 2 2 1 90 3 3 3 Y 1 3 N N N N 03/24/2019 Y 32 32 32
IA14 77 9/14/16 M 3 Y (Colorectal cancer, stage IIc)(prostate cancer, localized) N N N 1 2 2 2 3 3 1 1 2 2 1 80 3 3 3 Y 2 2 u N u na 03/03/2017 N 03-2017 6 6 6
IA15 76 6/26/16 M 2 Y (non-invasive bladder carcinoma)(CLL) N N N 1 2 1 1 3 3 1 1 3 2 1 90 3 3 3 Y 2 8 N N u N 10/28/2017 Y 16 16 16
IA16 63 12/25/17 F 1 N N N N 1 2 2 1 3 3 1 1 3 2 1 90 3 3 3 Y 1 8 N N u N 04/04/2020 Y 28 28 28
IA17 73 3/17/18 F 1 N Y (kidney) N Y tacrolimus, mycophenolate Y 1 1 2 2 2 3 3 2 1 2 2 1 30 1 2 3 Y 1 2 u N u N 12/24/2019 Y 21 21 21
IA18 78 5/6/18 F 3 N N N N 1 2 2 1 3 3 1 1 2 2 1 u 3 3 3 Y 1 1 u N N Y 7/6/18 08/01/2018 N 08-2018 3 2 3
IA19 77 6/10/15 F 1 N N N N 1 1 2 3 3 3 1 1 3 1 1 u 3 3 3 Y 2 2 N N N N 07/31/2019 Y 49 49 49
RI-01 77 2/25/15 M 2 Y(prosttate) N N N 1 1 2 2 3 3 1 1 3 1 1 90 3 3 3 Y 2 2 N N N N 3/24/15 N 3/24/15 1 1 1
RI-02 71 1/29/11 M 2 N N N N 1 3 3 3 3 3 1 1 2 3 1 90 3 3 3 Y 1 3 N N N N 3/9/11 N 4/2/11 2 2 2
RI-03 72 6/15/15 M 1 N N N N 1 2 3 3 3 3 1 1 1 2 1 80 2 3 3 Y 2 2 N N N y 8/23/16 12/20/16 N 1/30/17 19 14 19
RI-04 80 2/4/09 F 1 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 1 1 u N N N 8/19/09 N 8/19/09 6 6 6
RI-05 65 5/29/12 F 2 N N N N 1 2 3 3 3 3 1 1 2 2 1 95 3 3 3 Y 2 2 N N N N 5/14/19 y 84 84 84
RI-06 64 8/25/15 M 3 N Y N Y sirolimus 1 gr Y 1 1 3 3 3 3 3 3 1 3 3 1 u 1 3 3 Y 2 3 u N N N 5/8/19 y 44 44 44
RI-07 62 2/13/15 M 2 N N N N 1 2 1 3 3 3 1 1 2 2 1 80 3 3 3 Y 2 2 N N N y 5/23/15 8/9/15 N 8/9/15 6 3 6
RI-08 65 9/15/08 F 1 N N N N 1 3 3 3 3 3 1 3 2 2 1 u 3 3 3 Y 2 2 u N N y 7/23/14 6/27/19 y 129 70 129
RI-09 70 7/30/15 F 1 N N N N 1 3 3 3 3 3 3 3 3 3 3 u 3 3 3 Y 2 1 Y N N N 8/14/19 y 48 48 48
RI-10 70 11/7/16 F 2 Y(breast) N N N 1 2 2 1 1 1 1 1 2 2 1 u 2 3 3 Y 2 3 N N N y 11/23/18 2/19/19 N 2/19/19 27 24 27
RI-11 68 5/3/16 F 2 N N N N 1 2 3 1 3 3 1 1 3 2 1 u 3 3 3 Y 1 1 Y N N N 10/29/19 y 41 41 41
RI-12 87 11/24/09 F 2 N N N N 1 2 3 1 3 3 2 1 2 2 1 80 3 3 3 Y 1 3 u N N y 9/19/11 11/28/11 N 3/10/12 28 22 28
RI-13 65 11/2/12 F 2 N N N N 1 2 3 2 3 3 1 1 3 2 1 70 2 3 3 Y 2 3 N Y N N 5/13/19 y 78 78 78
RI-14 60 8/4/09 F 2 Y(lung small cell) N N N 1 1 3 1 2 2 1 1 3 1 1 100 3 3 3 Y 1 3 N N N N 11/29/19 y 123 123 123
RI-15 82 7/21/09 M 2 N N N N 1 2 3 2 3 3 1 1 3 2 1 80 3 3 3 Y 2 3 u N N N 5/3/10 N 5/3/10 10 10 10
RI-16 63 6/28/14 M 1 N N N N 1 2 3 3 3 3 1 1 3 2 1 90 3 3 3 Y 1 3 Y N N y 2/23/17 6/20/17 N 8/14/17 38 32 38
RI-17 64 8/28/12 F 1 N N N N 1 3 3 1 3 3 1 3 2 2 1 90 3 3 3 Y 2 1 N N N y 8/1/13 10/10/14 N 2/6/15 30 11 30
RI-18 73 6/30/14 M 2 N N N N 1 1 3 3 3 3 1 1 3 1 1 u 2 3 3 Y 1 2 N N N N 5/1/15 Y 10 10 10
RI-19 67 9/8/10 F 2 N N N N 1 2 3 1 2 3 1 1 3 2 1 95 3 3 3 Y 2 2 Y N N Y 2/8/11 2/21/11 N 4/18/11 7 5 7
RI-20 83 2/25/11 M 1 N N N N 1 2 3 1 3 3 1 1 3 2 1 80 3 3 3 Y 1 10 N N N N 6/11/12 N 9/22/13 31 31 31
RI-21 78 12/30/13 F 2 N N N N 1 2 3 3 3 3 1 1 3 3 1 100 3 3 3 Y 2 1 Y N N y 10/31/14 2/23/15 N 3/18/15 15 10 15
RI-22 70 9/5/14 F 1 N N N N 1 2 3 1 3 1 1 1 2 2 1 80 3 3 3 Y 1 3 Y N N y 4/6/16 3/15/17 N 4/16/17 31 19 31
RI-23 68 5/19/16 M 2 N N N N 1 1 1 1 1 2 1 1 2 1 1 95 3 3 3 Y 2 2 N N N y 6/12/17 5/19/18 N 5/30/18 24 13 24
RI-24 76 11/14/14 M 2 N N N N 1 1 3 2 2 2 1 2 2 2 1 u 3 3 3 Y 2 2 N N N N 3/12/15 N 3/25/15 4 4 4
RI-25 61 2/9/12 F 1 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 10 N N N N 3/18/19 y 85 85 85
RI-26 73 6/28/13 F 2 N N N N 1 2 3 3 3 3 1 1 3 2 1 95 3 3 2 Y 1 4 u N N N 7/10/18 y 60 60 60
RI-27 64 7/24/13 M 3 N N N N 1 2 3 1 3 3 1 1 3 2 1 u 2 3 3 Y 2 2 u N N N 10/19/13 N 10/19/13 3 3 3
RI-28 71 9/19/17 F 1 N N N N 1 2 1 1 1 1 1 1 2 2 1 90 3 2 3 Y 1 2 N N N N 11/20/19 y 26 26 26
RI-29 76 6/29/12 F 2 Y(ovarian) N N N 1 2 3 3 3 2 2 1 3 2 1 90 3 3 2 Y 1 2 Y N N N 11/16/17 N 8/30/18 73 73 73
RI-30 63 5/1/17 M 2 N N N N 1 2 1 1 1 1 1 1 3 2 1 u 3 3 3 Y 1 1 N N N y 6/13/19 1/15/20 y 32 25 32
RI-31 61 10/5/16 M 3 N N Y n N 1 2 1 1 3 3 3 1 2 3 1 75 2 3 3 Y 2 5 N Y N y 10/3/17 8/28/18 y 22 12 22
RI-32 77 3/31/09 M 2 N N N N 1 2 3 1 3 3 2 1 3 2 1 80 3 3 3 Y 1 6 N Y N N 4/23/09 N 5/9/09 1 1 1
RI-33 70 1/21/13 M 2 N N N N 1 2 3 3 3 3 3 1 3 2 1 95 3 3 3 Y 2 10 Y N N N 4/1/13 N 4/1/13 2 2 2
RI-34 68 9/8/17 M 1 Y(prostate) N N N 1 2 2 1 2 2 2 1 2 2 1 70 3 3 3 Y 1 2 u N N y 11/8/17 12/4/17 N 10/13/19 25 2 25
RI-35 77 1/6/17 M 2 N N N N 1 2 1 1 3 3 1 1 1 2 1 80 3 3 3 Y 1 1 N N N N 3/14/17 N 3/14/17 2 2 2
RI-36 75 7/20/10 F 2 N N N N 1 1 3 3 3 3 1 2 3 2 1 80 3 3 3 Y 1 9 u N N N 8/3/10 N 8/3/10 1 1 1
RI-37 77 11/6/13 M 3 N N N N 1 3 3 3 3 3 3 1 3 3 1 75 3 3 3 Y 2 2 u N N N 11/14/13 N 11/14/13 1 1 1
RI-38 74 4/3/09 M 2 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 2 u N N N 2/4/10 N 7/23/10 10 10 10
RI-39 88 1/8/09 M 2 Y(unknown) N N N 1 2 3 3 3 3 3 3 2 2 1 90 3 3 3 Y 2 2 u N N N 3/12/09 N 6/8/09 5 5 5
RI-40 73 11/25/09 M 1 N N N N 1 3 3 2 3 3 3 3 3 2 1 u 2 3 3 Y 2 4 N N N Y 8/30/10 9/2/10 N 10/30/10 9 9 9
RI-41 78 11/16/11 M 3 N N N N 1 2 3 3 3 3 1 1 2 2 1 40 3 3 3 Y 2 8 N N N N 5/20/19 y 90 90 90
RI-42 64 8/13/13 M 0 N N N N 1 1 3 2 3 3 1 1 2 1 1 75 3 2 3 Y 1 9 N N N y 10/19/16 8/7/19 y 72 38 72
RI-43 75 4/30/14 M 3 N N N N 1 3 3 2 3 3 1 1 3 3 1 90 3 3 3 Y 2 2 N N Y N 6/10/14 N 10/12/14 2 2 2
RI-44 71 9/5/14 M 3 N N N N 1 2 3 1 3 3 1 1 3 2 1 70 3 3 3 Y 1 3 N N N y 4/4/16 9/7/17 N 5/25/19 56 19 56
RI-45 80 4/9/15 M 2 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 2 1 Y N N N 5/19/15 N 5/28/15 1 1 1
RI-46 77 10/16/15 F 2 N N N N 1 2 1 1 3 1 1 1 3 3 1 u 2 3 3 Y 1 4 u Y N N 12/14/15 N 12/14/15 2 2 2
RI-47 83 3/1/16 M 2 N N N N 1 2 1 1 1 1 2 1 1 2 1 u 2 3 3 Y 2 8 u N N N 6/22/16 N 7/28/16 4 4 4
RI-48 75 9/25/16 M 2 N N N N 1 2 3 3 3 3 1 1 3 2 1 90 3 3 3 N 2 10 Y y N N 1/18/17 N 1/18/17 4 4 4
RI-49 68 1/10/17 M 2 N N N N 1 2 1 1 3 3 1 1 2 2 1 80 3 3 3 Y 2 3 N N N N 2/9/17 N 2/9/17 1 1 1
RI-50 70 11/21/18 M 2 N N N N 1 2 3 1 3 3 1 1 3 3 1 70 3 3 3 Y 1 2 N N N N 11/29/19 y 12 12 12
RI-51 73 12/21/18 F 1 N N N N 1 2 3 1 2 1 1 1 3 2 1 95 3 2 3 Y 2 3 N N N y 10/28/19 11/13/19 y 11 10 11
HUI1 76 2/22/13 f 3 n n n n 1 2 3 3 3 3 1 1 2 2 1 60 2 3 3 y 1 2 u u u y 8/27/13 1/18/15 n 1/18/15 23 6 23
HUI2 85 8/8/16 f 3 n n n n 1 2 1 1 2 2 1 1 2 2 1 80 2 3 3 y 2 10 n n u n 10/11/16 n 10/11//2016 2 2 2
HUI3 78 2/1/17 f 4 n n n n 1 2 1 1 2 2 2 1 1 2 1 80 2 3 3 y 1 3 n u u n 2/20/17 n 2/20/17 1 1 1
HUI4 71 8/19/14 f 3 n n n n 1 2 2 1 1 2 1 1 3 2 1 90 2 3 3 y 1 10 n n n y 6/9/16 2/19/17 n 2/19/17 30 22 30
HUI5 78 8/13/14 f 3 n n n n 1 2 1 1 3 3 1 1 2 2 1 50 2 3 3 y 1 3 u n n n 5/18/20 y 69 69 69
HUI6 62 2/8/16 f 1 n n n n 1 2 2 1 2 2 2 1 2 2 1 80 2 3 3 y 1 1 n n n y 11/8/17 2/19/18 n 2/19/18 24 21 24
HUI7 81 10/10/12 m 2 n n n n 1 2 3 2 2 2 1 1 3 2 1 80 2 2 3 y 2 2 n n n y 4/10/13 10/1/2017/2017 n 10/1/17 60 6 60
HUI8 83 11/18/12 f 1 n n n n 1 2 3 2 3 3 1 1 2 2 1 80 2 2 3 y 1 1 y n n y 3/6/15 3/30/20 n 3/30/20 88 28 88
HUI9 71 9/21/16 m 2 y (systemic DLBCL decades earlier dissimilar immunophenotype n n n 1 2 1 2 2 3 1 1 2 2 1 90 2 3 3 y 1 1 n n n n 6/6/20 y 45 45 45
HUI10 83 4/12/18 f 3 n n n n 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 y 1 10 y n n n 7/2/20 y 27 27 27
HUI11 84 8/25/14 m 2 n n n n 1 1 3 1 3 3 2 2 3 1 1 50 2 3 3 y 1 10 y n n n 3/20/18 y 43 43 43
HUI12 84 9/23/16 f 2 n n n n 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 y 2 2 y n y n 12/28/16 n 12/28/16 3 3 3
HUI13 79 8/28/15 f 2 n n n n 1 2 3 1 2 1 1 1 2 2 1 90 2 3 3 y 1 2 n n n y 12/16/15 4/2/20 y 56 4 56
HUI14 64 8/16/16 m 1 n y (SLE) n y weekly MTX n 1 2 1 1 3 3 1 1 3 3 1 50 2 3 3 y 1 10 n n n n 4/15/20 y 44 44 44
HUI15 75 3/16/17 m 2 n n n n 1 2 2 2 2 2 1 1 2 2 1 95 2 3 3 y 2 2 y n n y 3/31/18 1/11/20 n 1/11/20 22 12 22
HUI16 68 6/11/18 m 2 n n n n 1 2 2 2 3 3 2 1 3 2 1 80 2 3 3 y 2 2 y n y n 5/29/20 y 24 24 24
HUI17 68 10/1/15 f 2 y (breast cancer) n n n 1 2 2 1 3 3 1 1 2 2 1 80 2 3 3 y 2 3 y y n n 5/21/20 n 5/21/20 55 55 55
HUI18 66 7/14/15 f 2 y (triple negative breast ca, NED) n n n 1 1 2 1 2 2 1 1 1 1 1 70 2 3 3 y 1 10 y n n n 6/6/20 y 59 59 59
HUI19 85 9/20/13 m 4 Y, colon and renal cell N N N 1 2 1 1 3 3 1 1 2 2 1 90 2 3 3 Y 2 2 U N U n 10/2/13 N 10/2/13 1 1 1
HUI20 74 2/2/10 f u N N N N 1 3 3 3 3 3 3 3 2 2 1 u 3 3 3 Y 1 2 U U U Y 11/27/17 4/17/20 Y 122 93 122
HUI21 61 9/21/15 f 2 Y, melanoma N N N 1 1 3 3 3 3 1 1 3 1 1 90 3 3 3 Y 2 2 Y N N Y 9/20/16 4/18/17 N 4/18/17 19 12 19
HUI22 81 3/2/17 f 2 N N N N 1 2 1 3 2 2 1 1 2 2 1 90 2 3 3 Y 1 2 N N N Y 5/24/17 6/17/20 Y 39 2 39
HUI23 62 1/17/17 f 2 N N N N 1 2 3 3 3 3 1 1 2 2 1 u 2 3 3 Y 2 2 N N N Y 10/16/17 5/13/18 N 5/13/18 16 9 16
HUI24 73 5/27/16 f 2 N N N N 1 1 2 2 3 3 2 1 2 1 1 30 2 3 3 Y 2 2 N N N Y 12/16/16 5/28/20 Y 48 7 48
HUI25 75 11/2/15 f 3 N N N N 1 2 3 2 2 2 1 1 2 2 1 90 2 3 3 Y 1 2 N N N N 12/26/19 Y 49 49 49
HUI26 75 4/14/16 f 4 N N N N 1 2 2 2 2 2 2 1 2 2 1 80 2 3 3 Y 1 2 N Y N Y 6/17/17 8/21/18 N 8/21/18 28 14 28
HUI27 69 11/13/17 m 2 N N N N 1 2 1 1 2 2 1 1 2 2 1 95 2 3 3 Y 2 1 Y N N Y 2/20/18 8/6/18 Y 9 3 9
HUI28 66 2/27/18 f u N N N N 1 2 1 1 2 2 1 1 2 2 1 90 2 3 3 Y 1 10 N N U Y 5/30/18 8/25/18 N 8/25/2018/2018 6 3 6
HUI29 71 11/7/11 m 2 N N N N 1 2 3 3 3 3 1 1 3 2 1 90 2 3 3 Y 1 2 N N N N 6/16/20 Y 103 103 103
HUI30 77 8/2/11 f 2 N N N N 1 2 3 3 2 3 1 1 3 2 1 70 2 3 3 Y 1 2 Y U U Y 2/17/14 5/12/15 N 5/12/2015/2015 45 30 45
HUI31 77 7/30/11 m 2 N N N N 1 2 3 3 3 3 1 1 2 2 1 70 3 3 3 Y 1 2 U U U Y 11/27//2011 N 11/27/11 4 4 4
HUI32 87 3/19/12 f 1 Y, melanoma N N N 1 2 3 3 3 3 1 1 3 2 1 30 3 3 3 Y 2 2 U U U Y 7/7/12 N 7/7/12 4 4 4
HUI33 75 7/31/12 f 2 Y, colon CA N N N 1 2 3 3 3 3 2 1 1 2 1 40 3 3 3 Y 1 2 U N N Y 5/10/14 8/26/14 N 8/26/14 25 22 25
HUI34 65 5/15/11 f u N N N N 1 3 3 3 3 3 3 3 3 3 3 u 3 3 3 Y 1 10 Y U U Y 4/5/14 6/29/15 N 6/29/15 49 35 49
HUI35 62 3/20/10 f u N Y- IgA nephropathy N Y Mycophenolate Y 2 3 EBV associated lymphoproliferative disorder 3 3 3 3 3 3 1 3 3 1 u 1 3 3 Y 2 3 U U U N 3/3/20 Y 120 120 120
PS1 72 6/19/08 M 1 Y Y-mygrav N Y AZT. pred Y 1 1 3 3 3 3 3 3 3 2 2 1 U 1 2 2 Y 1 7 N N n N 10/04/2011 N 10/04/2011 40 40 40
PS2 64 4/4/08 M 1 Y-CML N N N 1 3 3 3 3 3 3 3 2 2 1 U 2 3 3 Y 2 10 y N n Y 11/21/10 02/18/2018 N 02/18/2018 118 31 118
PS3 79 11/13/08 F 2 N N N Y pred>arava Y N 1 3 3 3 3 3 3 3 2 2 1 U 2 3 3 Y 1 7 n N n N 01/01/2009 N 01/01/2009 2 2 2
PS5 67 4/13/08 M 2 Y-BASAL y (pmr) N y DEX N 1 3 3 3 3 3 3 3 2 2 1 U 3 3 3 Y 1 10 n N n Y 8/14/08 08/16/2008 N 08/16/2008 4 4 4
PS7 65 1/27/09 M 1 N N N N 1 3 2 3 3 3 3 3 2 2 1 50 2 3 3 Y 2 4 n N n N 04/28/2009 N 04/28/2009 3 3 3
PS8 67 5/5/09 F 2 N N N N 1 3 2 2 N 2 2 2 2 M 1 U 2 3 3 Y 2 7 n N n N 06/19/2009 N 06/19/2009 1 1 1
PS9 80 7/3/09 F 2 N N N N 1 3 3 3 3 3 3 3 2 M 1 U 2 3 3 Y 1 5 n Y n N 01/10/2010 N 01/10/2010 6 6 6
PS10 74 2/23/10 M 1 N N N N 1 3 3 3 3 3 3 3 2 M 1 U 2 3 3 Y 1 10 n N n N 05/01/2010 N 05/01/2010 3 3 3
PS11 74 5/10/10 M 1 N N N N 1 3 3 3 3 3 3 3 2 M 1 U 2 3 3 Y 1 10 n N n N 10/27/2010 N 10/27/2010 5 5 5
PS12 69 12/16/10 F 1 N N N N 1 3 3 3 3 3 3 3 2 M 1 U 2 3 3 Y 2 8 y N Y Y 7/14/12 09/30/2013 N 09/30/2013 33 19 33
PS13 6/6/10 F 1 N N N N 1 3 3 3 3 3 3 3 2 M 1 U 2 3 3 Y 2 10 n N N N 01/07/2020 Y 115 115 115
PS14 75 7/27/10 F 1 Y-MELANOMA N N N 1 3 3 3 3 3 3 3 2 M 1 U 2 3 3 Y 1 10 n N N N 09/18/2011 N 09/18/2011 14 14 14
PS17 62 3/22/11 F 2 N N N N 1 3 3 3 3 3 3 3 3 3 1 U 2 3 3 Y 1 6 n N n y 10/3/11. 03/21/2013 N 03/21/2013 24 7 24
PS18 64 6/27/11 M 2 N N N N 1 3 3 3 3 3 3 3 3 3 1 U 2 3 3 Y 1 2 n N n N 07/11/2018 N HOSPICE 84 84 84
PS19 64 4/28/11 M 1 N N N N 1 3 3 3 3 3 3 3 3 3 1 U 2 3 3 Y 1 10 n N n N 04/10/2012 N 04/10/2012 12 12 12
PS22 81 10/10/11 F 1 N N N N 3 poorly diff 3 3 1 3 3 1 3 3 3 1 U 2 3 3 Y 2 1 y N n N 05/29/2012 N 05/29/2012 7 7 7
PS23 60 3/27/12 M u N N N N 3 NK T CELL 3 3 3 3 3 3 3 3 3 1 25 2 3 3 Y 1 11 n N 2 N 08/17/2012 N 08/17/2012 5 5 5
PS25 65 6/2/12 F 1 U N N N 1 3 3 3 3 3 3 3 3 3 1 U 2 3 3 Y 2 10 y N n N 06/02/2014 N 06/02/2014 24 24 24
PS28 68 5/29/12 F 3 Y-PANCREATIC N N N 1 3 3 3 3 3 3 3 3 3 1 U 2 3 3 Y 1 10 n N N N 08/25/2012 N 08/25/2012 3 3 3
PS29 69 5/22/12 M 3 N N N N 1 3 3 3 3 3 3 3 3 3 1 50 2 3 3 Y 2 3 n n n N 11/23/2012 N 11/23/2012 6 6 6
PS30 73 11/7/12 F 3 Y-FL 3A N N N 1 3 3 1 3 3 1 1 2 2 1 70 2 3 3 Y 2 10 y n n N 09/28/2013 N 09/28/2013 10 10 10
PS31 64 8/20/12 M 4 N N N N 1 3 3 3 3 3 3 3 3 3 1 U 2 2 2 Y 2 10 y n n N 10/27/2012 N 10/27/2012 2 2 2
PS32 63 12/20/12 M u Y-COLON N N N 1 3 3 3 3 3 3 3 2 1 1 U 3 3 3 Y 1 2 n n n N 07/15/2014 N 07/15/2014 19 19 19
PS35 76 8/1/13 F 3 N N N N 1 3 2 2 2 2 2 2 3 N 1 U 2 3 3 Y 2 2 n n n N 04/09/2019 Y 68 68 68
PS36 63 F 1 N N N N 1 3 2 2 3 3 3 3 3 3 1 U 2 3 3 Y 2 2 y y n y 4/4/14 07/04/2014 N 07/04/2014 53 50 53
PS37 68 8/2/13 F 1 N N N N 1 3 2 2 3 3 1 2 1 1 1 90 2 3 3 Y 2 1 y 2 n N 04/12/2014 N 04/12/2014 7 7 7
PS39 76 6/10/13 F u N N N N 1 3 3 3 3 3 3 3 3 3 1 U 2 3 3 Y 1 10 n N n Y 8/9/13 08/24/2013 N 08/24/2013 2 2 2
PS40 63 8/1/13 F 2 Y-rectal Ca N N N 1 3 3 3 3 3 3 3 3 3 1 U 2 3 3 Y 1 2 Y N N y u 2/28/14 N 2/28/14 6 6 6
PS42 64 3/19/14 M 2 N N N N 1 1 3 3 3 3 3 3 2 3 1 90 3 3 3 Y 1 1 N N N Y 6/18/14 7/3/14 N 7/12/14 4 3 4
PS44 71 6/16/14 M 1 N N N N N 1 3 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 1 2 Y N N N 1/14/20 Y 67 67 67
PS45 84 2/21/14 F 3 N N N N N 1 3 3 3 3 3 3 3 3 3 1 100 2 3 3 Y 2 2 Y N N n 5/27/14 N 6/24/14 4 4 4
PS46 79 10/26/15 M 2 N N N N 1 3 3 1 1 2 1 1 2 3 1 U 2 3 3 Y 2 3 n n n N 12/21/2015 N 12/21/2015 2 2 2
PS47 67 6/8/15 M 1 N N N N 1 1 2 1 2 2 1 2 3 2 1 U 2 3 3 Y 2 10 n N N Y 8/10/15 09/05/2015 N 09/05/2015 3 2 3
PS49 61 6/14/15 M 2 N Y N Y tacro Y 1 1 3 2 3 3 2 2 2 2 1 1 U 1 3 3 Y 1 8 u n N u 11/20/2019 Y 53 53 53
PS50 72 11/5/15 F 2 N N N N 1 3 2 1 2 3 1 2 2 1 1 50 2 3 3 Y 1 6 n n N Y 6/20/16 12/06/2016 N 12/06/2016 7 7 7
PS52 66 2/25/16 F 1 N N N N 1 3 2 1 2 2 1 2 2 3 1 80 2 3 3 Y 2 2 n n N N 08/01/2019 Y 42 42 42
PS53 69 3/15/16 F 2 N N N N 1 3 2 1 2 2 2 2 1 1 1 95 2 3 3 Y 2 9 n n N N 05/30/2016 N 05/30/2016 2 2 2
PS54 71 6/9/16 F 3 N N N N 1 3 2 3 3 2 2 2 2 1 1 U 2 3 3 Y 2 10 n n N N 11/12/2017 N 11/12/2017 17 17 17
PS55 70 2/23/16 M 1 u u N N 1 3 2 2 2 2 1 2 2 1 1 95 2 3 3 Y 2 6 n n N y 2/4/19 02/11/2020 Y 48 36 48
PS56 76 6/23/16 M 1 N N N N 1 3 2 1 2 1 1 2 2 2 1 u 2 3 3 Y 1 1 y n N N 08/15/2019 Y 38 38 38
PS57 69 8/2/16 F 2 N N N N 1 2 2 1 3 2 1 1 2 1 1 u 2 3 3 Y 2 8 y n N N 02/20/2017 N 02/20/2017 6 6 6
PS58 64 4/15/16 M 1 N N N N 1 3 2 1 3 1 1 2 2 2 1 90 2 3 3 Y 1 8 n n N N 06/07/2016 N 06/07/2016 2 2 2
PS61 75 12/22/17 M 1 N N N N 1 2 1 1 2 2 1 1 2 2 1 U 2 3 3 Y 1 2 n n n y 1/5/18 02/25/2020 Y 02/25/2020 26 1 26
PS62 71 7/6/17 F 1 N N N N 1 2 1 1 2 2 2 2 2 1 1 U 2 3 3 Y 2 9 n n n u 05/11/2018 N 05/11/2018 10 10 10
PS63 60 9/21/17 M 1 N N N N 1 1 1 2 1 2 1 1 2 1 1 U 2 3 3 Y 2 2 n n n y u 04/27/2018 Y 7 3 7
PS64 66 7/26/17 M 2 N N N N 1 2 1 1 2 2 1 1 2 2 1 U 2 2 2 Y 1 8 n n n N N 10/18/2017 N 10/18/2017 1 1 1
PS69 71 2/13/17 M 1 N N N N 3 PTCL 3 3 3 3 3 3 3 3 2 U 2 3 3 Y 2 7 N N N n 9/3/19 Y 31 31 31
PS70 76 3/9/17 M 1 N N N N 1 2 1 1 2 2 1 1 3 2 1 90 2 3 3 Y 2 6 n N N N 7/5/17 N 7/5/17 4 4 4
PS71 72 11/30/18 F 1 N N N N 1 2 1 1 2 2 1 1 3 2 1 U 2 3 3 Y 1 1 N N N N 11/5/19 Y 12 12 12
PS75 62 4/24/18 F 1 N N N N 1 2 3 1 3 3 1 1 3 2 1 U 2 3 3 Y 1 2 Y N Y N 2/29/20 Y 22 22 22
PS77 63 5/24/18 M 1 N N N N 1 2 1 1 2 2 1 1 3 2 1 U 2 3 3 Y 2 1 Y N N N 4/20/20 Y 23 23 23
PS78 84 1/15/18 F 1 N N N N 1 1 1 2 2 2 1 1 3 1 1 U 2 3 3 Y 1 6 N N N N 5/9/19 N 6/13/19 17 17 17
PS79 71 6/19/18 F 1 Y - breast Ca s/p lumpectomy N N N 1 2 1 1 2 2 1 1 1 2 1 90 2 3 3 Y 1 4 N N N N 12/17/19 Y 18 18 18
PS80 72 1/16/18 F 2 N N N N 1 2 1 1 2 2 2 1 3 2 1 U 2 3 3 Y 2 2 N N N N 3/10/18 N 5/10/18 4 4 4
PS87 67 12/18/13 M 2 YProstate Ca N N N 3 LPL 3 3 3 3 3 3 3 3 1 u 3 3 3 Y 1 5 N y N N 4/11/14 N 7/31/14 7 7 7
CF1 86 4/2/15 M 3 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 2 y 1 10 u u u Y 1-Aug 9/1/19 Y 53 28 53
CF2 75 8/11/15 M 1 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 2 y 1 10 u u u N 4/1/20 Y 56 56 56
CF3 75 11/16/13 M 2 N N N N 1 1 3 3 3 3 3 3 3 3 1 u 2 y 1 10 n u u N 9/1/18 N Nov-18 60 60 60
CF4 72 3/8/11 M 1 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 2 y 1 10 y u u Y 1-Aug 5/1/20 Y 110 101 110
CF5 83 12/8/16 F 3 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 2 y 2 10 y u u N 6/1/20 Y 42 42 42
CF6 78 9/2/11 M 2 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 2 y 2 10 y u u Y 1-Apr 1/1/20 Y 100 43 100
CF7 77 2/16/16 F 3 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 2 y 2 10 n u u N 5/1/19 Y 38 38 38
CF8 86 12/19/13 F 1 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 2 y 1 10 n u u Y 1-Dec 12/1/18 N 12/1/18 60 48 60
CF9 77 8/27/16 M 1 N N N N 1 2 3 3 3 3 3 3 3 3 1 u 2 y 1 10 u u u Y Nov-18 7/1/20 Y 46 27 46
CF10 70 6/9/16 F 1 N N N N 1 1 3 3 3 3 3 3 3 3 1 u 2 y 1 10 y u u N 6/1/20 Y 48 48 48
CF11 85 10/18/17 F 1 N N N N 1 1 3 3 3 3 3 3 3 3 1 u 2 y 1 6 y u u N 4/1/20 N 4/1/20 30 30 30
CF12 75 6/20/16 F 2 N N N N 1 1 3 3 3 3 3 3 3 3 1 u 2 y 1 6 y u u Y 1-Jan 7/1/20 Y 48 6 48
CF15 78 1/22/18 F 2 N N N N 1 2 3 3 3 3 3 3 3 3 1 u 2 y 2 10 u u u N 6/1/20 Y 29 29 29
CF16 78 8/1/19 M 3 y-colorectal N N N 1 2 3 3 3 3 3 3 3 3 1 u 2 y 2 10 m u u N 7/1/20 Y 10 10 10
CF17 77 2/26/19 M 2 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 2 n m u y N 6/1/20 Y 16 16 16
CF18 84 9/26/18 F 3 N N N N 1 1 3 3 3 3 3 3 3 3 1 u 2 y 2 2 m u u N 6/1/20 y 21 21 21
CF20 83 3/15/19 F 3 y esoph CA, N N N 1 2 3 3 1 1 3 3 3 3 1 u 2 y 2 8 u u u Y Sep-19 7/1/20 Y 16 6 16
CF21 9/3/10 F 1 N N N N 1 3 3 3 3 3 3 3 3 3 1 u 2 y 2 7 n u u Y Nov-19 7/1/20 Y 118 110 118
Explanations and Answers
0
No answers posted
Post your Answer - free or at a fee
NB: Post a homework question for free and get answers - free or paid homework help.
Get answers to: Sas Homework That I Need A Whole Code For This Project. The Data And The Project Instructions Are Attached or similar questions only at Tutlance.
Related Questions
- Inverse Transform Method And Accept-And-Reject Method.
- Java To Create Sqlite Database
- Sas Coding With Macros - Create And Draw Special Data Sets That Can Be Plotted In Small Squares.
- Create A Collage Is Jes 6.0 Using Jython
- Writing Kaggle Recommendation Competition Case Study
- Law And American Society (Poli Sci)
- Javafx Interface Design Assignment
- Physics Based Matlab Project And Report
- Project To Implement A Scanner, Recursive Descent Parser, De-Parser For A Small Programming Language Hawk
- Using C To Create Maze Game Program
- Will You Solve These Questions For Me Using Matlab?
- Implementing A Scanner And A Recursive Descent Parser
- Sas Assignment For Sas Homework
- Analysis For Coding Let Me Know If You Have Questions
- C++ Beetle Game (Using Functions)
- Do My Homework Please, Its Easy In Spyder
- C++ Program To Calculate Cellular Automata
- To Build A Functional File Query Server. Involves The Basics Of Distributed Programming And Client/Server Structures.
- Javascript Functions/Arrays/Objects
- Javascript Functions/Arrays/Objects
- Javascript Functions/Arrays/Objects
- Optimazation In Pyomo Platform
- Points Kinetic Equations Nuclear Reactor
- Python Code Using Regular Expression, Write A Python Program To Parse The Text File Named 'Student_Data.txt'.
- C# Blackjack Project Parts A And B
- Create A Card Class. Implement The Icard Interface. The Properties Should Have Private Setters.
- Coding Assignment Using Knowledge Of C++, No Need To Finish The Assignment All The Way But Do A Good Amount
- Excel Analytic Solver And Data Mining
- Loan Schedule With Interest, Principle By Month
- Assignment 2 - String Manipulation
- Write A Python Program ............................................
- Coding Assignment - 1 Page Layout Design
- Python Programming Neural Network Help
- Use Python Programming That Takes User Input And Stores In Dictionary
- Review The Sample Dragon Text Game Storyboard For A Dragon-Themed Game.
- Programming Project 2 : Repetition
- Data Mining Homework Using Bigrams And N Grams- Prediction
- Use Java To Add And Subtract Exact Time
- Using A Data Set, Answer Some Basic Questions About The Dataset Using Jupyter Notebook
- Excel Homework About Data Processing And Statistics
- Sas Entrprise Miner And Predictive Modeling
- This Assignment I Need To Complete A Lab In Arcgis
- Basic Programing C++, Enter Your First Name And Last Name C++
- Data Cleaning And Also Regression
- Python Code Using While Loop To Calculate Accrued Interest *Due 9/20/21 10:00 Pm Cdt*
- Creative Coding Assignment Using P5.Js And P5,Play.js Libraries
- Using Python Ml Models And/Or Text Mining Models To Address An Interesting Research Question
- Anova Assistance And Data Analysis Assistance
- Data Science/ Machine Learning System Design
- Doing My Homework With Python Programming