Plotting With Jupyter- Data Science- Map Scatter Plot

Need help with this question or any other Data Science homework assignment task or project?

Ask A Question

Plotting With Jupyter- Data Science- Map Scatter Plot

Asked
Modified
Viewed 38

The assignment is in Jupyter and I attached it for your convenience

This order does not have tags, yet.

Additional Instructions

Question 1: Scatter Plot of Rainfall Channels Use the provided Calgary rainfall dataset as well as the dataset containing the locations of the rainfall channels to produce a visualization that: · shows on a map scatter plot, the total amount of rainfall recorded by each channel for the 2018 rainfall season; · provides a hover interaction for each channel that shows as text the following: total rainfall for the season, the number of rainy days for the season, and the mean rainfall per day for all the days it rained. Question 2: Life Expectancy Index¶ The Life Expectancy Index (LEI) is used as part of the Human Development Index which ranks countries into different tiers of human development. The LEI for a country is defined as: LEI=LE−20/85−20 where LE is the life expectancy at birth. Using the provided datasets only, perform the following tasks: · Produce a choropleth world map visualization showing the LEI or the year 2017. Colour map the LEILEI values according to the following bins: [0.5,0.6)[0.5,0.6), [0.6,0.7)[0.6,0.7), [0.7,0.8)[0.7,0.8), [0.8,0.9)[0.8,0.9) and [0.9,1)[0.9,1), and use a visually distinct colour to identify countries for which the data is not available. · Please browse the UNDP Human Development Reports. This task asks you to produce a visualization that is inspired by the UNDP's visualization of the LEI. Compute the LEI per country for all the years for which the data is available. Use k-means clustering to cluster the LEI series' into four clusters. Produce a visualization showing the LEI series' as lines for all the countries and colour the lines according to their cluster membership. For bonus marks, please include informative non-default hover interactions in your visualizations to facilitate data exploration and comparison. POINT STATION CHANNEL Name Elevation Quadrant Northing Easting Ward Boundaries City Quadrants Calgary Communities Ward Boundaries 2017 POINT (-114.18665813492161 51.15482858138461) SPYHILL 1 Spy Hill 0 NW 51.1548285814 -114.186658135 3 2 202 10 POINT (-114.05074999967637 50.87669444475213) PRIDDIS 41 Priddis Slough 0 SE 50.8766944448 -114.05075 6 3 133 6 POINT (-114.20311777529577 51.11534470273686) LSVRSPRING 2 Silver Springs 0 NW 51.1153447028 -114.203117775 13 2 147 9 POINT (-114.06240819346772 50.91051062803269) MIDNAPORE 20 Midnapore 1045.9 SE 50.910510628 -114.062408193 6 3 263 13 POINT (-113.95816492887724 50.94801832680598) SHEPARD LAG 23 Shepard Lagoons 1032 SE 50.9480183268 -113.958164929 4 3 79 8 POINT (-114.02752984780602 51.430538294448255) CROSSFIELD 28 Crossfield 1114.2 51.4305382945 -114.027529848 POINT (-114.11885040788745 50.907177179917184) Evergreen Precip 47 Evergreen 0 SW 0.0 0.0 5 1 39 6 POINT (-114.18261111055446 50.907638888672636) PROVIDENCE 42 Providence 0 50.9076388887 -114.182611111 5 1 224 6 POINT (-114.15028263583865 51.126078704424266) EDGEMONT 3 Edgemont 0 NW 51.1260787044 -114.150282636 2 2 272 4 POINT (-114.18024509199186 51.08435067942505) BOWNESS 4 Bowness 0 NW 51.0843506794 -114.180245092 13 2 149 9 POINT (-114.06803811828553 51.115554014788515) HUNTINGTON 6 Huntington 1080.8 NW 51.1155540148 -114.068038118 2 2 261 4 POINT (-114.08339617003467 51.140460958147244) COUNTRYHLS 27 Country Hills 1078.4 NW 51.1404609582 -114.08339617 2 2 172 12 POINT (-114.04227027629852 51.068571657563965) MOUNTVIEW 8 Mountview 1076.4 NE 51.0685716576 -114.042270276 10 4 88 7 POINT (-114.0112498908703 51.2785380881217) AIRDRIE 24 Airdrie 1086.2 51.2785380881 -114.011249891 POINT (-114.11846292165309 50.90761283803141) BRIDLEWOOD 32 Bridlewood 0 SW 50.907612838 -114.118462922 5 1 39 6 POINT (-113.94882957134003 51.126473016633916) SADDLERIDGE 33 Saddleridge 0 NE 51.1264730166 -113.948829571 11 4 2 1 POINT (-113.82428244385339 51.04803182479013) CHESTERMERE 31 Chestermere 0 51.0480318248 -113.824282444 POINT (-114.02478666340305 50.825767765782345) DEWINTON 30 DeWinton 1108.3 50.8257677658 -114.024786663 POINT (-114.18758865124072 51.02099324885904) SIGNAL HILL 34 Signal Hill 0 SW 51.0209932489 -114.187588651 1 1 278 14 POINT (-113.9938127994461 51.03038128816031) WEST DOVER 11 West Dover 1060.3 SE 51.0303812882 -113.993812799 10 3 196 11 POINT (-114.071245883345 51.0048089553852) WINDSOR PK 17 Windsor Park 1062.3 SW 51.0048089554 -114.071245883 8 1 144 5 POINT (-113.93533120242921 51.03430728342149) 68ST LAKE 12 68 St Lake 1056.5 SE 51.0343072834 -113.935331202 12 3 209 11 POINT (-113.97020661311997 51.05142269670339) FOREST HEIGHTS 10 Forest Heights 1066.6 SE 51.0514226967 -113.970206613 12 3 194 11 POINT (-114.19440689181488 50.853654836275545) RANCH 37 Ranch RG 0 50.8536548363 -114.194406892 POINT (-114.1285172662023 51.006027920196566) LINCOLN PK 16 Lincoln Park 1114.2 SW 51.0060279202 -114.128517266 8 1 42 2 POINT (-114.1872903332045 51.06156844517798) COACH HILL 13 Coach Hill 1231.5 SW 51.0615684452 -114.187290333 1 1 189 14 POINT (-114.46800000034084 51.03674999971967) HWY22 43 Highway 22 0 51.0367499997 -114.468 POINT (-114.15244507058881 51.03864087879308) ROSSCARROCK 15 Rosscarrock 1145.4 SW 51.0386408788 -114.152445071 14 1 281 2 POINT (-113.95767637272729 51.091568702208946) TEMPLE 9 Temple 1091.5 NE 51.0915687022 -113.957676373 9 4 22 3 POINT (-114.02970898949592 51.05207093059583) Tom Campbell Precip 40 Tom Campbell 0 0.0 0.0 10 4 137 11 POINT (-113.95418866721879 50.87746877342638) Seton Precip 48 Seton 0 SE 0.0 0.0 4 3 90 8 POINT (-114.08399847032432 51.04404968795353) DOWNTOWN 14 Downtown 1050.1 SW 51.044049688 -114.08399847 14 1 260 2 POINT (-114.24795436466589 51.09104316199858) VALLEYRIDGE 35 Valley Ridge 0 NW 51.091043162 -114.247954365 13 2 47 9 POINT (-114.07455457133409 50.96614898477539) HAYSBORO 19 Haysboro 1054.2 SW 50.9661489848 -114.074554571 8 1 195 5 POINT (-114.07135525401071 51.076207102883515) TUXEDO 7 Tuxedo 1084 NW 51.0762071029 -114.071355254 7 2 17 7 POINT (-114.14001061935177 51.081650205804245) UNIVERSITY 5 University 1107.3 NW 51.0816502058 -114.140010619 13 2 269 9 POINT (-114.04842719673827 51.02921811071509) WATER CENT 38 Water Centre 0 SE 51.0292181107 -114.048427197 10 3 160 11 POINT (-114.4424234249817 51.167472438967074) COCHRANE 29 Cochrane 0 51.167472439 -114.442423425 POINT (-114.12129580486774 50.957634559666374) CEDARBRAE 18 Cedarbrae 1109.3 SW 50.9576345597 -114.121295805 8 1 126 5 POINT (-114.03850029091872 50.9294468399336) PARKLAND 21 Parkland 1040.5 SE 50.9294468399 -114.038500291 6 3 117 13 POINT (-113.93449999972292 50.98950000041434) FORRESTLWN 44 Forest Lawn Creek 0 SE 50.9895000004 -113.9345 10 3 73 11 POINT (-113.98834553271556 50.86001386798942) PINE CR WTP 36 Pine Creek WTP 0 SE 50.860013868 -113.988345533 6 3 99 13 POINT (-113.93666666747492 51.16527777760604) Cornerstone 46 Cornerstone 1090 51.1652777776 -113.936666667 11 4 11 1 POINT (-113.9631668519238 50.91614839708709) MCKENZIE LK 26 McKenzie Towne 1033.8 SE 50.9161483971 -113.963166852 4 3 46 8 POINT (-114.00088359999468 50.983094595234306) OGDEN 22 Ogden 1025.1 SE 50.9830945952 -114.0008836 10 3 28 11

Answers

0

No answers posted

Post your Answer - free or at a fee

Login to your account tutor account to post an answer

Posting a free answer earns you +20 points.

Login

To get help with a similar task to Plotting With Jupyter- Data Science- Map Scatter Plot, Ask for Data Science Assignment Help online.